Performance Comparison K-Nearest Neighbor, Naive Bayes, and Decision Tree Algorithms for Netflix Rating Classification
DOI:
https://doi.org/10.57152/ijatis.v1i1.1104Keywords:
Classification, Decision Tree, K-Nearest Neighbor, Naïve Bayes, NetflixAbstract
Netflix is a streaming service platform that is growing along with the increasing number of internet users. This research aims to classify movie and TV show rating datasets on Netflix by comparing the KNN, Naive Bayes and Decision Tree algorithms to determine the accuracy comparison of the three algorithms. From the results of the analysis, it is found that the three algorithms produce a comparison of the accuracy of movie and tv show rating classification data on Netflix with different values. Based on the confusion matrix, namely Accuracy, Precision, and Recall, it is found that the Naive Bayes algorithm has the highest accuracy of 72%, the Decision Tree algorithm is 70% and the KNN algorithm has the lowest accuracy of 61%. From these results it can be stated that the Naive Bayes algorithm can classify movie and tv show rating data on Netflix better than compared to the other two algorithms.
References
D. W. Azalia and R. H. Magnadi, “ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI KEPUTUSAN PEMBELIAN PADA LAYANAN VIDEO ON DEMAND (Studi Pada Pengguna Netflix),” DIPONEGORO JOURNAL OF MANAGEMENT, vol. 9, no. 2, pp. 1–12, 2020, [Online]. Available: http://ejournal-s1.undip.ac.id/index.php/dbr
O. Ormanl?, “‘Online film platforms and the future of the cinema.’ CTC,” 2019.
F. Provost and T. Fawcett, “Data Science and its Relationship to Big Data and Data-Driven Decision Making,” Big Data, vol. 1, no. 1, pp. 51–59, Mar. 2013, doi: 10.1089/big.2013.1508.
H. M. Ç.-R. and G. G. Wickham, “R for data science. ‘ O’Reilly Media, Inc.,’” 2023.
P. N. Harahap and S. Sulindawaty, “Implementasi Data Mining Dalam Memprediksi Transaksi Penjualan Menggunakan Algoritma Apriori (Studi Kasus PT.Arma Anugerah Abadi Cabang Sei Rampah),” MATICS, vol. 11, no. 2, p. 46, Jan. 2020, doi: 10.18860/mat.v11i2.7821.
A. Tangkelayuk and E. Mailoa, “Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes Dan Decision Tree,” vol. 9, no. 2, pp. 1109–1119, 2022, [Online]. Available: http://jurnal.mdp.ac.id
X. Song, T. Xie, and S. Fischer, “Accelerating kNN search in high dimensional datasets on FPGA by reducing external memory access,” Future Generation Computer Systems, vol. 137, pp. 189–200, Dec. 2022, doi: 10.1016/j.future.2022.07.009.
S. Suyanto, P. E. Yunanto, T. Wahyuningrum, and S. Khomsah, “A multi-voter multi-commission nearest neighbor classifier,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 8, pp. 6292–6302, Sep. 2022, doi: 10.1016/j.jksuci.2022.01.018.
I. Wickramasinghe and H. Kalutarage, “Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation,” Soft comput, vol. 25, no. 3, pp. 2277–2293, Feb. 2021, doi: 10.1007/s00500-020-05297-6.
P. Golpour et al., “Comparison of support vector machine, naïve bayes and logistic regression for assessing the necessity for coronary angiography,” Int J Environ Res Public Health, vol. 17, no. 18, pp. 1–9, Sep. 2020, doi: 10.3390/ijerph17186449.
E. Ascari, M. Cerchiai, L. Fredianelli, D. Melluso, F. Rampino, and G. Licitra, “Decision trees and labeling of low noise pavements as support for noise action plans,” Environmental Pollution, vol. 337, Nov. 2023, doi: 10.1016/j.envpol.2023.122487.
Q. Li, X. Wang, Q. Pei, X. Chen, and K.-Y. Lam, “Consistency preserving database watermarking algorithm for decision trees,” Digital Communications and Networks, Jan. 2023, doi: 10.1016/j.dcan.2022.12.015.
A. Tangkelayuk and E. Mailoa, “Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes Dan Decision Tree,” vol. 9, no. 2, pp. 1109–1119, 2022, [Online]. Available: http://jurnal.mdp.ac.id
M. Mastur Alfitri and D. Rusda, “Evaluasi Performa Algoritma Naïve Bayes Dalam Mengklasifikasi Penerima Bantuan Pangan Non Tunai,” vol. 7, no. 3, pp. 1433–1445, 2023, doi: 10.30865/mib.v7i3.6151.
N. Dalhat Mu’azu and S. Olusanya Olatunji, “K-nearest neighbor based computational intelligence and RSM predictive models for extraction of Cadmium from contaminated soil,” Ain Shams Engineering Journal, vol. 14, no. 4, Apr. 2023, doi: 10.1016/j.asej.2022.101944.
M. M. Saritas and A. Yasar, “International Journal of Intelligent Systems and Applications in Engineering Performance Analysis of ANN and Naive Bayes Classification Algorithm for Data Classification,” Original Research Paper International Journal of Intelligent Systems and Applications in Engineering IJISAE, vol. 7, no. 2, pp. 88–91, 2019, doi: 10.1039/b000000x.
A. M. A. K. and A. K. M. Masum. Rahat, “Comparison of Naive Bayes and SVM Algorithm based on sentiment analysis using review dataset.,” 2019 8th International Conference System Modeling and Advancement in Research Trends (SMART). IEEE, 2019.
V. A. Dev and M. R. Eden, “Formation lithology classification using scalable gradient boosted decision trees,” Comput Chem Eng, vol. 128, pp. 392–404, Sep. 2019, doi: 10.1016/j.compchemeng.2019.06.001.
A. Musadi, C. C. Tertius, J. Steven, H. A. Saputri, and K. M. Suryaningrum, “Comparing Artificial Neural Network and Decision Tree Algorithm to Predict Tides at Tanjung Priok Port,” Procedia Comput Sci, vol. 227, pp. 406–414, 2023, doi: 10.1016/j.procs.2023.10.540.
P. Kanani and M. Padole, “Deep learning to detect skin cancer using google colab,” Int J Eng Adv Technol, vol. 8, no. 6, pp. 2176–2183, Aug. 2019, doi: 10.35940/ijeat.F8587.088619.
F. R. V. Alves and R. P. Machado Vieira, “The Newton Fractal’s Leonardo Sequence Study with the Google Colab,” International Electronic Journal of Mathematics Education, vol. 15, no. 2, Dec. 2019, doi: 10.29333/iejme/6440.
S. Ray, K. Alshouiliy, and D. P. Agrawal, “Dimensionality reduction for human activity recognition using google colab,” Information (Switzerland), vol. 12, no. 1, pp. 1–23, Jan. 2021, doi: 10.3390/info12010006.