Implementation of K-Means, K-Medoid and DBSCAN Algorithms In Obesity Data Clustering
DOI:
https://doi.org/10.57152/ijatis.v1i1.1109Keywords:
Clustering, DBSCAN, DBI, K-Means, K-Medoid, ObesityAbstract
Obesity is an excessive accumulation of body fat and can be harmful to health. This study aims to understand the patterns and relationships between obesity data that have been obtained, so a data clustering step will be carried out using the K-Means, K-Medoid and DBSCAN algorithms. This study utilizes the Davies Bouldin Index (DBI) to determine the best cluster value comparison and validated. So the results of the best cluster value in processing obesity data are using the K-Means K2 algorithm with a value of 0.604. The K-Medoid algorithm obtained the best cluster k2, with a DBI value of around 0.614. and the DBSCAN algorithm clustering trial K3, with a value of 1.040. Thus in this study the comparison results of the application of 3 clustering algorithms, the results obtained are the K-Means algorithm shows the value of the resulting cluster is the best of other algorithms in clustering obesity data with a value of 0.604.
References
Muscogiuri, G., Verde, L., Sulu, C., Katsiki, N., Hassapidou, M., Frias-Toral, E., ... & Barrea, L. (2022). Mediterranean diet and obesity-related disorders: what is the evidence?. Current Obesity Reports, 11(4), 287-304..
Thamrin, S. A., Arsyad, D. S., Kuswanto, H., Lawi, A., & Nasir, S. (2021). Predicting Obesity in Adults Using Machine Learning Techniques: An Analysis of Indonesian Basic Health Research 2018. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.669155
Septiyanti, S., & Seniwati, S. (2020). Obesity and Central Obesity in Indonesian Urban Communities. Jurnal Ilmiah Kesehatan (JIKA), 2(3), 118–127. https://doi.org/10.36590/jika.v2i3.74
Susi Muktiharti, Purwanto, Imam Purnomo, Rosmiati Saleh. Fakultas Ilmu Kesehatan, Program Studi Kesehatan Masyarakat, Universitas Pekalongan. Faktor Risiko Kejadian Obesitas pada Remaja SMA Negeri 2 dan SMA Negeri 3 di Kota Pekalongan Tahun 2010. Diunduh dari:http://www.download.portalgaru da.org/ipi21062.pdf. Akses: 17 September 2015.
Susi Muktiharti, Purwanto, Imam Purnomo, Rosmiati Saleh. Fakultas Ilmu Kesehatan, Program Studi Kesehatan Masyarakat, Universitas Pekalongan. Faktor Risiko Kejadian Obesitas pada Remaja SMA Negeri 2 dan SMA Negeri 3 di Kota Pekalongan Tahun 2010.
Hadi, H. (2004). Gizi lebih sebagai tantangan baru dan implikasinya terhadap kebijakan pembangunan kesehatan nasional. Jurnal Gizi Klinik Indonesia, 1(2), 47-53.2
Brunner, E. J., Chandola, T., & Marmot, M. G. (2007). Prospective effect of job strain on general and central obesity in the Whitehall II Study. American Journal of Epidemiology, 165(7), 828–837. https://doi.org/10.1093/aje/kwk058
Nainggolan, R., Perangin-Angin, R., Simarmata, E., & Tarigan, A. F. (2019). Improved the Performance of the K-Means Cluster Using the Sum of Squared Error (SSE) optimized by using the Elbow Method. Journal of Physics: Conference Series, 1361(1). https://doi.org/10.1088/1742-6596/1361/1/012015
Chen, J., Qi, X., Chen, L., Chen, F., & Cheng, G. (2020). Quantum-inspired ant lion optimized hybrid k-means for cluster analysis and intrusion detection. Knowledge-Based Systems, 203. https://doi.org/10.1016/j.knosys.2020.106167
Arora, P., Deepali, & Varshney, S. (2016). Analysis of K-Means and K-Medoids Algorithm for Big Data. Physics Procedia, 78, 507–512. https://doi.org/10.1016/j.procs.2016.02.095
Ahmed, K. N., & Razak, T. A. (2016). IJARCCE An Overview of Various Improvements of DBSCAN Algorithm in Clustering Spatial Databases An Overview of Various Improvements of DBSCAN Algorithm in Clustering Spatial Databases. International Journal of Advanced Research in Computer and Communication Engineering, 5(2). https://doi.org/10.17148/IJARCCE.2016.5277
Govindasamy, K., & Velmurugan, T. (2018). Analysis of student academic performance using clustering techniques. International Journal of Pure and Applied Mathematics, 119(15), 309-323.
Aggarwal, D., & Sharma, D. (2019). Application of clustering for student result analysis. In International Journal of Recent Technology and Engineering. https://www.researchgate.net/publication/333115249
Ananda, L. R. (2018). Clustering Untuk Menentukan Calon Mahasiswa Berprestasi. Jiti, 1(2), 16–19.
Alfina, Santosa, Barkbah. “Analisa Perbandingan Metode Hierarchical Clustering, KMeans dan Gabungan Kedua dalam Cluster Data”, Jurnal Teknik ITS, Vol. 1, No. 1, 2012.
Yuan, C., & Yang, H. (2019). Research on K-Value Selection Method of K-Means Clustering Algorithm. J, 2(2), 226–235. https://doi.org/10.3390/j2020016
Murni, D., Efendi, B., Rahmadani, N., Informasi, S., & Tinggi Manajemen Informatika dan Komputer Royal Kisaran, S. (2022). IMPLEMENTATION OF EMPLOYEE DISCIPLINE CLUSTERING AT GOTTING SIDODADI VILLAGE OFFICE BANDAR PASIR MANDOGE USING K-MEANS ALGORITHM. Jurnal Teknik Informatika (JUTIF), 3(2), 295–304. https://doi.org/10.20884/1.jutif.2022.3.2.236
Saurabh Shah & Manmohan Singh “Comparison of A Time Efficient Modified K-Mean Algorithm with K-Mean and K-Medoids algorithm”, International Conference on Communication Systems and Network Technologies, 2012I.
Jiawei Han, Han Kamber “Data Mining Concept and Techniques" ,2nd Edition
Shalini S Singh & N C Chauhan ,“K-Means v/s KMedoidss: A Comparative Study”, National Conference on Recent Trends in Engineering & Technology, 2011.
Saputra, R., Mustakim, M., Okfalisa, O., & Ridwan, M. Menentukan Popularitas Calon Presiden dan Tren pada Pilpres 2019 menggunakan Algoritma DBSCAN. In Seminar Nasional Teknologi Informasi Komunikasi dan Industri (pp. 123-130).
Chakraborty NKNagwani Lopamudra Dey, S. (2011). Performance Comparison of Incremental K-means and Incremental DBSCAN Algorithms. In International Journal of Computer Applications (Vol. 27, Issue 11).
Khan, Kamran, et al. "DBSCAN: Past, present and future." The fifth international conference on the applications of digital information and web technologies (ICADIWT 2014). IEEE, 2014.
Made, I., Bimantara, S., & Supriana, W. (2022). CASE BASED REASONING (CBR) FOR OBESITY LEVEL ESTIMATION USING K-MEANS INDEXING METHOD. 11(4). https://archive.ics.
Mega, W. (2015). CLUSTERING MENGGUNAKAN METODE K-MEANS UNTUK MENENTUKAN STATUS GIZI BALITA (Vol. 15, Issue 2).
Radhika Kyadagiri ,Prof. D. Jamuna ,Masthan Mohammed, “An Efficient Density based Improved K- Medoids Clustering algorithm” ,International Journal of Computers and Distributed Systems Vol. No.2, Issue 1, December 2012
R. Pratap, K. Suvarna, J. Rama, and D. . Nageswara, “An Efficient Dens Improved K-Medoids Clustering algorithm, “Int. J. Adv. Comput. Sci. Appl., vol. 2, no. 6, 2011