Performance Comparison of Classification Algorithms for Chronic Kidney Disease Prediction
DOI:
https://doi.org/10.57152/ijatis.v1i2.1120Keywords:
Chronic Kidney Disease, Decision Tree, Ensemble Learning, Extra Trees, XGBoostAbstract
Chronic Kidney Disease (CKD) is an abnormal kidney function or failure of the kidneys to filter the bloodstream and remove metabolic waste that progresses over months or years. Chronic kidney disease is asymptomatic in its early stages. It has no age limit, and if you already suffer from chronic kidney disease, the likelihood of a sudden decline in kidney function increases. The medical record data of chronic kidney disease patients can be utilized to make predictions and can be processed using machine learning to classify the risk of death. This research will use Ensemble Learning, which combines Decision Tree, XGBoost, and Extra Trees algorithms. In the pre-processing stage, value filling is carried out using the random sampling method. It was concluded that the highest accuracy value in Extra Trees was 96%. In comparison, the Decision Tree was 94%, and the XGBoost method obtained 95% accuracy so that Pathologists can use it in developing a program to predict chronic kidney disease
References
A. Ogunleye and Q. G. Wang, “XGBoost Model for Chronic Kidney Disease Diagnosis,” IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 17, no. 6, pp. 2131–2140, 2020, doi: 10.1109/TCBB.2019.2911071.
Parul Sinha and Poonam Sinha, “Comparative Study of Chronic Kidney Disease Prediction using KNN and SVM,” Int. J. Eng. Res., vol. V4, no. 12, pp. 608–612, 2015, doi: 10.17577/ijertv4is120622.
D. Baidya, U. Umaima, M. N. Islam, F. M. J. M. Shamrat, A. Pramanik, and M. S. Rahman, “A Deep Prediction of Chronic Kidney Disease by Employing Machine Learning Method,” 2022 6th Int. Conf. Trends Electron. Informatics, ICOEI 2022 - Proc., no. April, pp. 1305–1310, 2022, doi: 10.1109/ICOEI53556.2022.9776876.
R. Diana, H. Warni, and T. Sutabri, “Penggunaan Teknologi Machine Learning Untuk Pelayanan Monitoring Kegiatan Belajar Mengajar Pada SMK Bina Sriwijaya Palembang,” J. Tek. Inform., vol. 11, no. 1, 2023.
C. Sanjaya and S. H. Supangkat, “Predictive Analitycs Menggunakan Machine Learning Untuk Memprediksi Waktu Keterlambatan Berdasarkan Penyebab Keterlambatan Pada PT. Kereta Api Indonesia,” J. Sist. Cerdas, vol. 3, no. 1, pp. 165–180, 2020.
Rahmanul Hoque, Suman Das, Mahmudul Hoque, and Mahmudul Hoque, “Breast Cancer Classification using XGBoost,” World J. Adv. Res. Rev., vol. 21, no. 2, pp. 1985–1994, 2024, doi: 10.30574/wjarr.2024.21.2.0625.
M. A. Islam, M. Z. H. Majumder, and M. A. Hussein, “Chronic kidney disease prediction based on machine learning algorithms,” J. Pathol. Inform., vol. 14, p. 100189, 2023, doi: https://doi.org/10.1016/j.jpi.2023.100189.
H. Khalid, A. Khan, M. Zahid Khan, G. Mehmood, and M. Shuaib Qureshi, “Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease,” Comput. Intell. Neurosci., vol. 2023, no. 1, p. 9266889, Jan. 2023, doi: https://doi.org/10.1155/2023/9266889.
M. Imran et al., “Predictive Modeling of Chronic Kidney Disease Using Extra Tree Classifier: A Comparative Analysis with Traditional Methods,” vol. 06, no. 02, 2024.
T. Arifin and D. Ariesta, “Prediksi Penyakit Ginjal Kronis Menggunakan Algoritma Naive Bayes Classifier Berbasis Particle Swarm Optimization,” J. Tekno Insentif, vol. 13, no. 1, pp. 26–30, 2019.
H. Amalia, “Perbandingan Metode Data Mining Svm Dan Nn Untuk Klasifikasi Penyakit Ginjal Kronis,” J. PILAR Nusa Mandiri, vol. 14, no. 1, pp. 1–6, 2018.
J. Han, J. Pei, and H. Tong, Data Mining: Concepts and Techniques - Jiawei Han, Jian Pei, Hanghang Tong - Google Books, Fourth Edi. 2022.
R. Hartono, Y. Sumaryana, and A. Nurfaizi, “Analisa Perbandingan Kinerja Algoritma Klasifikasi Untuk Prediksi Penyakit Kanker Payudara,” J. Teknol. Inf., vol. 7, no. 1, pp. 116–124, 2023.
A. P. Sandi and V. W. Ningsih, “Implementasi Data Mining Sebagai Penentu Persediaan Produk Dengan Algoritma Fp-Growth Pada Data Penjualan Sinarmart,” J. Publ. Ilmu Komput. dan Multimed., vol. 1, no. 2 SE-Articles, May 2022, doi: 10.55606/jupikom.v1i2.343.
D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020, doi: 10.30865/mib.v4i2.2080.
I. Ikko, M. Rizky, S. Yusuf, and I. Sriyanto, “Perbandingan Kinerja Algoritma Naive Bayes, Support Vector Machine dan Random forest untuk Prediksi Penyakit Ginjal Kronis Imaniar Ikko Mulya Rizky 1a* , Suhendro Yusuf Irianto 2b. Sriyanto 3c,” vol. 18, pp. 139–151, 2023.
M. P. Putri et al., Algoritma Dan Struktur Data. 2022.
B. Sunarko et al., “Penerapan Stacking Ensemble Learning untuk Klasifikasi Efek Kesehatan Akibat,” Edu Komputika J., vol. 10, no. 1, pp. 55–63, 2023, doi: https://doi.org/10.15294/edukomputika.v10i1.72080.
Y. Jiang, G. Tong, H. Yin, and N. Xiong, “A Pedestrian Detection Method Based on Genetic Algorithm for Optimize XGBoost Training Parameters,” IEEE Access, vol. 7, pp. 118310–118321, 2019, doi: 10.1109/ACCESS.2019.2936454.
M. Syukron, R. Santoso, and T. Widiharih, “Perbandingan Metode Smote Random Forest Dan Smote Xgboost Untuk Klasifikasi Tingkat Penyakit Hepatitis C Pada Imbalance Class Data,” J. Gaussian; Vol 9, No 3 J. GaussianDO - 10.14710/j.gauss.9.3.227-236, Aug. 2020.
B. Jange, “Prediksi Harga Saham Bank BCA Menggunakan Prophet,” J. Trends Econ. Account. …, vol. 2, no. 1, pp. 1–5, 2021, doi: 10.47065/arbitrase.v3i2.495.
R. Shafique, A. Mehmood, and G. S. Choi, “Cardiovascular disease prediction system using extra trees classifier,” 2019.
J. Abdollahi, B. Nouri-Moghaddam, and M. Ghazanfari, “Deep Neural Network Based Ensemble learning Algorithms for the healthcare system (diagnosis of chronic diseases),” arXiv Prepr. arXiv2103.08182, 2021.
M. Vakili, M. Ghamsari, and M. Rezaei, “Performance analysis and comparison of machine and deep learning algorithms for IoT data classification,” arXiv Prepr. arXiv2001.09636, 2020.
P. Carmona, A. Dwekat, and Z. Mardawi, “No more black boxes! Explaining the predictions of a machine learning XGBoost classifier algorithm in business failure,” Res. Int. Bus. Financ., vol. 61, p. 101649, 2022.
M. A. Fayyad, V. Kurniawan, M. R. Ahugrah, B. H. Estanto, and T. Bilal, "Application of Recurrent Neural Network Bi-Long Short-Term Memory, Gated Recurrent Unit and Bi-Gated Recurrent Unit for Forecasting Rupiah Against Dollar (USD) Exchange Rate", Public Research Journal of Engineering, Data Technology and Computer Science, vol. 2, no. 1, pp. 1–10, Apr. 2024, doi: 10.57152/predatecs.v2i1.1094.