Sentiment Analysis of Public Opinion on Films Taylor Swift Eras Tour on the Twitter Platform Using the Machine Learning

Authors

  • Nova Idriani R Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Annisa Dahlia Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Pratiwi Ningum Mesa Community College, America

DOI:

https://doi.org/10.57152/ijatis.v1i2.1130

Keywords:

Decision Tree, Naïve Bayes, Random Forest, Sentiment Analysis, Taylor Swift

Abstract

Sentiment analysis is the understanding of opinions, feelings, or attitudes conveyed in texts, such as tweets, reviews, or other forms. The film “Taylor Swift: The Eras Tour” is trending among teenager, narrating Taylor Swift’s journey in the “Eras Tour” concert across various countries, encapsulated in a music-filled film. This has prompted research on sentiment analysis of netizens’ tweets about this film, considering the possibility of negative reviews. Three algorithms, Naïve Bayes, Decision Tree, and Random Forest. were used with an 80:20 data ratio and the SMOTE oversampling method, which is a unique in this research to ensure data sizes for the three sentiments: positive, negative, and neutral. The final result of this research is a word cloud for each sentiment towards the film, with the Decision Tree algorithm achieving the highest accuracy at 91%. The hope for future research is to implement and focus on the emotional aspect in conducting sentiment analysis.

References

Y. Nurtikasari, Syariful Alam, and Teguh Iman Hermanto, “Analisis Sentimen Opini Masyarakat Terhadap Film Pada Platform Twitter Menggunakan Algoritma Naive Bayes,” INSOLOGI: Jurnal Sains dan Teknologi, vol. 1, no. 4, pp. 411–423, Aug. 2022, doi: 10.55123/insologi.v1i4.770.

R. Amelia, D. Darmansah, N. S. Prastiwi, and M. E. Purbaya, “Impementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Masyarakat Indonesia Mengenai Drama Korea Pada Twitter,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 2, p. 338, Apr. 2022, doi: 10.30865/jurikom.v9i2.3895.

R. Fajar, S. Program, P. Rekayasa, N. Lunak, and R. Bengkalis, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” vol. 3, no. 1.

A. D. Dwi, S. Hafidz, S. W. H. Aji, Y. A. Almi, and U. Ema, “Perbandingan Metode Random Forest dan KNN pada,” 2023.

O. I. Gifari, M. Adha, I. Rifky Hendrawan, F. Freddy, and S. Durrand, “Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine,” JIFOTECH (JOURNAL OF INFORMATION TECHNOLOGY, vol. 2, no. 1, 2022, doi: 10.46229/jifotech.v2i1.330.

A. Firdausi Nuzula Zamzami and Mahendra Dwifebri P, “Perbandingan Metode Random Forest dan KNN pada,” 2021. doi: DOI 10.30865/mib.v5i2.2835.

R. A. M. Fahrul, L. A. Nuril, and I. Uce, “Prediksi Penyakit Hipertensi Menggunakan Metode Decison Tree dan Random Forest,” Jurnal Ilmiah Komputasi, vol. 23, no. 1, Mar. 2024, doi: 10.32409/jikstik.23.1.3503.

V. A. Fitri, R. Andreswari, and M. A. Hasibuan, “Sentiment analysis of social media Twitter with case of Anti-LGBT campaign in Indonesia using Naïve Bayes, decision tree, and random forest algorithm,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 765–772. doi: 10.1016/j.procs.2019.11.181.

M. F. Asshiddiqi and K. M. Lhaksmana, “Perbandingan Metode Decision Tree dan Support Vector Machine untuk Analisis Sentimen pada Instagram Mengenai Kinerja PSSI,” 2020.

E. Fitri, Y. Yuliani, S. Rosyida, and W. Gata, “Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine,” TRANSFORMTIKA, vol. 18, no. 1, pp. 71–80, 2020, [Online]. Available: www.nusamandiri.ac.id,

Y. Wang, G. Shen, and L. Hu, “Importance evaluation of movie aspects: Aspect-based sentiment analysis,” Proceedings - 2020 5th International Conference on Mechanical, Control and Computer Engineering, ICMCCE 2020, pp. 2444–2448, 2020, doi: 10.1109/ICMCCE51767.2020.00527.

M. Wankhade, A. C. S. Rao, and C. Kulkarni, A survey on sentiment analysis methods, applications, and challenges, vol. 55, no. 7. Springer Netherlands, 2022. doi: 10.1007/s10462-022-10144-1.

P. Mehta and S. Pandya, “A review on sentiment analysis methodologies, practices and applications,” International Journal of Scientific and Technology Research, vol. 9, no. 2, pp. 601–609, 2020.

V. Jackins, S. Vimal, M. Kaliappan, and M. Y. Lee, “AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes,” Journal of Supercomputing, vol. 77, no. 5, pp. 5198–5219, 2021, doi: 10.1007/s11227-020-03481-x.

I. A. P. Banlawe, J. C. D. Cruz, J. C. P. Gaspar, and E. J. I. Gutierrez, “Optimal Frequency Characterization of Mango Pulp Weevil Mating Activity using Naïve Bayes Classifier Algorithm,” Proceeding - 2021 IEEE 17th International Colloquium on Signal Processing and Its Applications, CSPA 2021, no. March, pp. 116–120, 2021, doi: 10.1109/CSPA52141.2021.9377277.

R. Das, S. K. Biswas, D. Devi, and B. Sarma, “An Oversampling Technique by Integrating Reverse Nearest Neighbor in SMOTE: Reverse-SMOTE,” Proceedings - International Conference on Smart Electronics and Communication, ICOSEC 2020, no. Icosec, pp. 1239–1244, 2020, doi: 10.1109/ICOSEC49089.2020.9215387.

W. Satriaji and R. Kusumaningrum, “Effect of Synthetic Minority Oversampling Technique (SMOTE), Feature Representation, and Classification Algorithm on Imbalanced Sentiment Analysis,” 2018 2nd International Conference on Informatics and Computational Sciences, ICICoS 2018, pp. 99–103, 2018, doi: 10.1109/ICICOS.2018.8621648.

M. Guia and R. R. Silva, “Comparison of Naïve Bayes , Support Vector Machine , Decision Trees and Random Forest on Sentiment Analysis,” no. Ic3k, pp. 525–531, 2019, doi: 10.5220/0008364105250531.

T. D. Alhafidh, P. H. Gunawan, and B. A. Wahyudi, “The Sentiment Analysis of Spider-Man?: No Way Home Film Based on,” vol. 5, no. 158, pp. 177–182, 2022.

P. Baid, “Sentiment Analysis of Movie Reviews using Machine Learning Techniques,” vol. 179, no. 7, pp. 45–49, 2017.

D. Yuan, J. Huang, X. Yang, and J. Cui, “Improved random forest classification approach based on hybrid clustering selection,” Proceedings - 2020 Chinese Automation Congress, CAC 2020, pp. 1559–1563, 2020, doi: 10.1109/CAC51589.2020.9326711.

M. F. Fayyad and D. T. Savra, “Sentiment Analysis of Towards Electric Cars using Naive Bayes Classifier and Support Vector Machine Algorithm,” vol. 1, no. July, pp. 1–9, 2023.

P. Susan Ramlo, “Using Word Clouds to Visually Present Q Methodology Data and Findings,” Human Subjectivity, vol. 9, no. 2, pp. 99–111, 2011, doi: 10.16194/j.cnki.31-1059/g4.2011.07.016.

C. A. DePaolo and K. Wilkinson, “Get Your Head into the Clouds: Using Word Clouds for Analyzing Qualitative Assessment Data,” TechTrends, vol. 58, no. 3, pp. 38–44, 2014, doi: 10.1007/s11528-014-0750-9.

S. Dharaiya, B. Soneji, D. Kakkad, and N. Tada, “Generating Positive and Negative Sentiment Word Clouds from E-Commerce Product Reviews,” 2020 International Conference on Computational Performance Evaluation, ComPE 2020, pp. 459–463, 2020, doi: 10.1109/ComPE49325.2020.9200056.

Downloads

Published

2024-08-06