Performance Evaluation of Machine Learning Algorithms in Predicting Global Warming: A Comparative Study of Random Forest, K-Nearest Neighbors and Support Vector Machine

Authors

  • Anisa Putri Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Refri Martiansah Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Qhairani Frilla F. Safiesza Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Muhammad Fahri Abduh Kastamonu University, Türkiye

DOI:

https://doi.org/10.57152/ijatis.v1i2.1194

Keywords:

Global Warming, K-Nearest Neighbors, Machine Learning, Random Forest, Support Vector Machine

Abstract

Global Warming is a global warming phenomenon that has a significant impact on human health and the environment. This research aims to apply Machine Learning algorithms, namely the Random Forest algorithm, K-Nearest Neighbors (K-NN), and Support Vector Machines (SVM) in predicting global warming. First, global warming data downloaded from Kaggle via dataset is used as research material. Then, a global warming prediction model is built using this algorithm and then evaluated using criteria such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean squared error (RMSE), R2, and Confusion Matrix. Finally, based on the evaluation results, research confirms that the K-NN algorithm shows the best performance, with the highest R2 value and low prediction error compared to other algorithms, such as Random Forest which shows the lowest performance. In terms of classification, K-NN achieved the highest accuracy (96.55%) and excellent performance in the confusion matrix and classification report. Overall, the findings of this study emphasize the dominance of K-NN in this context, thereby providing a strong basis for selecting models for predicting global warming phenomena.

References

S. M. Malakouti, “Utilizing time series data from 1961 to 2019 recorded around the world and machine learning to create a Global Temperature Change Prediction Model,” Case Stud. Chem. Environ. Eng., vol. 7, no. December 2022, p. 100312, 2023, doi: 10.1016/j.cscee.2023.100312.

F. M. Viola, S. L. D. Paiva, and M. A. Savi, “Analysis of the global warming dynamics from temperature time series,” Ecol. Modell., vol. 221, no. 16, pp. 1964–1978, 2010, doi: 10.1016/j.ecolmodel.2010.05.001.

W. C. Leong, R. O. Kelani, and Z. Ahmad, “Prediction of air pollution index (API) using support vector machine (SVM),” J. Environ. Chem. Eng., vol. 8, no. 3, p. 103208, 2020, doi: 10.1016/j.jece.2019.103208.

K. Fabrice and Y. Emmanuel, “Exploring the nexus of climate variability , population dynamics , and maize production in Togo?: Implications for global warming and food security,” Farming Syst., vol. 1, no. 3, p. 100053, 2023, doi: 10.1016/j.farsys.2023.100053.

H. Ghasemi-Mobtaker, A. Kaab, S. Rafiee, and A. Nabavi-Pelesaraei, “A comparative of modeling techniques and life cycle assessment for prediction of output energy, economic profit, and global warming potential for wheat farms,” Energy Reports, vol. 8, pp. 4922–4934, 2022, doi: 10.1016/j.egyr.2022.03.184.

O. Access, A. P. Mishra, and U. P. Singh, “Global warming prediction using machine learning,” no. 07, pp. 1670–1675, 2021.

A. Sanjurjo-de-No, A. M. Pérez-Zuriaga, and A. García, “Analysis and prediction of injury severity in single micromobility crashes with Random Forest,” Heliyon, vol. 9, no. 12, 2023, doi: 10.1016/j.heliyon.2023.e23062.

L. A. Demidova, I. A. Klyueva, and A. N. Pylkin, “Hybrid approach to improving the results of the SVM classification using the random forest algorithm,” Procedia Comput. Sci., vol. 150, pp. 455–461, 2019, doi: 10.1016/j.procs.2019.02.077.

E. S. Mohamed, T. A. Naqishbandi, S. A. C. Bukhari, I. Rauf, V. Sawrikar, and A. Hussain, “A hybrid mental health prediction model using Support Vector Machine, Multilayer Perceptron, and Random Forest algorithms,” Healthc. Anal., vol. 3, no. July 2022, p. 100185, 2023, doi: 10.1016/j.health.2023.100185.

B. Azari, K. Hassan, J. Pierce, and S. Ebrahimi, “Evaluation of Machine Learning Methods Application in Temperature Prediction,” Comput. Res. Prog. Appl. Sci. Eng., vol. 8, no. 1, pp. 1–12, 2022, doi: 10.52547/crpase.8.1.2747.

Anggista Oktavia Praneswara, “Perbandingan K-Nearest Neighbors, Support Vector Dan Random Forest Pada Prediksi Medical Cost,” Indones. J. Comput. Sci., vol. 12, no. 4, pp. 2035–2048, 2023, doi: 10.33022/ijcs.v12i4.3298.

R. Hruška, M. Kmetík, and J. Chocholá?, “Selection of the Transport Mode Using the Ahp Method Within Distribution Logistics of Motor Fuels,” Promet - Traffic - Traffico, vol. 33, no. 6, pp. 905–917, 2021, doi: 10.7307/ptt.v33i6.3940.

L. Wang, L. Wang, Y. Li, and J. Wang, “A century-long analysis of global warming and earth temperature using a random walk with drift approach,” Decis. Anal. J., vol. 7, no. April, p. 100237, 2023, doi: 10.1016/j.dajour.2023.100237.

C. J. Varshney, A. Sharma, and D. P. Yadav, “Sentiment analysis using ensemble classification technique,” 2020 IEEE Students’ Conf. Eng. Syst. SCES 2020, pp. 12–17, 2020, doi: 10.1109/SCES50439.2020.9236754.

W. Chen, L. Yi, J. Wang, J. Zhang, and Y. Jiang, “Evaluation of the livability of arid urban environments under global warming: A multi-parameter approach,” Sustain. Cities Soc., vol. 99, no. March, p. 104931, 2023, doi: 10.1016/j.scs.2023.104931.

A. Deolika, K. Kusrini, and E. T. Luthfi, “Analisis Pembobotan Kata Pada Klasifikasi Text Mining,” J. Teknol. Inf., vol. 3, no. 2, p. 179, 2019, doi: 10.36294/jurti.v3i2.1077.

T. Zulhaq Jasman, E. Hasmin, C. Susanto, and W. Musu, “Perbandingan Logistic Regression, Random Forest, dan Perceptron pada Klasifikasi Pasien Gagal Jantung,” CSRID J., vol. Vol. 14 No, no. 3, pp. 271–286, 2022.

A. Satria, R. M. Badri, and I. Safitri, “Prediksi Hasil Panen Tanaman Pangan Sumatera dengan Metode Machine Learning,” Digit. Transform. Technol. |, vol. 3, no. 2, pp. 389–398, 2023.

Y. I. Sulistya, “Analisis perbandingan Reduction Technique dengan metode Dimentional Reduction dan Cross Validation pada dataset Breast Cancer,” Indones. J. Data Sci., vol. 3, no. 2, pp. 82–88, 2022, doi: 10.56705/ijodas.v3i2.41.

Winarno, A. Prasetyo, and A. Wijayanto, “Decision Support System for Indonesia Smart Card (KIP) Scholarship Selection Using The AHP And VIKOR Method Integrated with EKTP,” E3S Web Conf., vol. 448, p. 02035, 2023, doi: 10.1051/e3sconf/202344802035.

G. Battineni, N. Chintalapudi, and F. Amenta, “Machine learning in medicine: Performance calculation of dementia prediction by support vector machines (SVM),” Informatics Med. Unlocked, vol. 16, no. May, p. 100200, 2019, doi: 10.1016/j.imu.2019.100200.

V. Nemade and V. Fegade, “Machine Learning Techniques for Breast Cancer Prediction,” Procedia Comput. Sci., vol. 218, no. 2022, pp. 1314–1320, 2022, doi: 10.1016/j.procs.2023.01.110.

V. A. Nugroho, D. P. Adi, A. T. Wibowo, M. T. Sulistyono, and A. B. Gumelar, “Klasifikasi Jenis Pemeliharaan dan Perawatan Container Crane menggunakan Algoritma Machine Learning,” Matics, vol. 13, no. 1, pp. 21–27, 2021, doi: 10.18860/mat.v13i1.11525.

A. Tangkelayuk, “The Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes, dan Decision Tree,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 1109–1119, 2022, doi: 10.35957/jatisi.v9i2.2048.

K. C. Onyelowe, C. B. Mahesh, B. Srikanth, C. Nwa-David, J. Obimba-Wogu, and J. Shakeri, “Support vector machine (SVM) prediction of coefficients of curvature and uniformity of hybrid cement modified unsaturated soil with NQF inclusion,” Clean. Eng. Technol., vol. 5, p. 100290, 2021, doi: 10.1016/j.clet.2021.100290.

C. Fan, X. Lai, H. Wen, and L. Yang, “Coal and gas outburst prediction model based on principal component analysis and improved support vector machine,” Geohazard Mech., no. November, 2023, doi: 10.1016/j.ghm.2023.11.003.

H. Nalatissifa, W. Gata, S. Diantika, and K. Nisa, “Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes, Support Vector Machine (SVM), dan Random Forest untuk Prediksi Ketidakhadiran di Tempat Kerja,” J. Inform. Univ. Pamulang, vol. 5, no. 4, p. 578, 2021, doi: 10.32493/informatika.v5i4.7575.

M. Nachouki, E. A. Mohamed, R. Mehdi, and M. Abou Naaj, “Student course grade prediction using the random forest algorithm: Analysis of predictors’ importance,” Trends Neurosci. Educ., vol. 33, p. 100214, 2023, doi: 10.1016/j.tine.2023.100214.

A. Gatera, M. Kuradusenge, G. Bajpai, C. Mikeka, and S. Shrivastava, “Comparison of random forest and support vector machine regression models for forecasting road accidents,” Sci. African, vol. 21, p. e01739, 2023, doi: 10.1016/j.sciaf.2023.e01739.

Downloads

Published

2024-07-27