Comparation of Decision Tree Algorithm, Naive Bayes, K-Nearest Neighbords on Spotify Music Genre
DOI:
https://doi.org/10.57152/ijatis.v1i1.1219Keywords:
Classification, Decisien Tree, K-Nearest Neighbors, Naïve Bayes, SpotifyAbstract
Comparison of Decision Tree, Naive Bayes, K-Nearest Neighbords Algorithm on Spotify Music Genre Decision Tree, Naive Bayes, K-Nearest Neighbords This research aims to compare three algorithms Decision Tree, Naive Bayes and K-Nearest Neighbors (K-NN) in classifying Spotify music genres using dataset from Kaggle. The results show that the Decision Tree algorithm produces an accuracy of 23%, Naive Bayes 17%, and K-Nearest Neighbors 19%. This research provides an overview of Spotify music listeners in choosing music genres. Based on research results, the Decision Tree algorithm has the highest accuracy in classifying Spotify music genres, with the Electric Dance Music (EDM) genre being the most popular among Spotify music fans, followed by rap, pop, r&b, Latin and rock. . Meanwhile, the Naive Bayes and K-Nearest Neighbors algorithms show lower accuracy.
References
U. L. Musyarofah, S. N. Alima, and D. S. Y. Kartika, “Klasifikasi Top 50 Spotify Tahun 2010-2019 Menggunakan Metode K-Means Clustering,” Pros. Semin. Nas. Teknol. dan Sist. Inf., vol. 2, no. 1, pp. 215–220, 2022, doi: 10.33005/sitasi.v2i1.300.
C. W. Harto, V. C. Mawardi, and N. J. Perdana, “Website Rekomendasi Dan Klasifikasi Lagu Menggunakan Metode Weighted K-Nearest Neighbor,” J. Ilmu Komput. dan Sist. Inf., vol. 11, no. 1, 2023, doi: 10.24912/jiksi.v11i1.24074.
S. Navisa, Luqman Hakim, and Aulia Nabilah, “Komparasi Algoritma Klasifikasi Genre Musik pada Spotify Menggunakan CRISP-DM,” J. Sist. Cerdas, vol. 4, no. 2, pp. 114–125, 2021, doi: 10.37396/jsc.v4i2.162.
B. A. Firdaus, D. E. Ratnawati, and B. T. Hanggara, “Klusterisasi Popularitas Artist pada Playlist Today’s Top Hits Menggunakan Metode K-Means dengan Integrasi Spotify Web API dan Teknologi Amazon SageMaker,” vol. 5, no. 1, pp. 2548–964, 2021, [Online]. Available: http://j-ptiik.ub.ac.id
L. Nurhalimah, T. I. Hermanto, and I. Kaniawulan, “Analisis Prediksi Mood Genre Musik Pop Menggunakan Algoritma K-Means dan C4.5,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 1006, 2022, doi: 10.30865/jurikom.v9i4.4597.
A. M. Argina, “Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,” Indones. J. Data Sci., vol. 1, no. 2, pp. 29–33, 2020, doi: 10.33096/ijodas.v1i2.11.
S. Sahar, “Analisis Perbandingan Metode K-Nearest Neighbor dan Naïve Bayes Clasiffier Pada Dataset Penyakit Jantung,” Indones. J. Data Sci., vol. 1, no. 3, pp. 79–86, 2020, doi: 10.33096/ijodas.v1i3.20.
Thoriq Nurchaidir, Widodo, and Bambang Prasetya Adhi, “Klasifikasi Genre Musik Menggunakan Algoritma Naïve Bayes Classifier Untuk Layanan Streaming Youtube,” PINTER J. Pendidik. Tek. Inform. dan Komput., vol. 7, no. 1, pp. 1–6, 2023, doi: 10.21009/pinter.7.1.1.
M. Hidayat, A. N. Fuadi, D. P. Utomo, and ..., “Studi Komparasi Algoritma Naïve Bayes Dan K-Nn Untuk Klasifikasi Penerimaan Beasiswa Di Mi Al–Islamiyah Karangsawah,” … J. Ilm. Tek. …, vol. 2, no. 4, pp. 172–180, 2023, [Online]. Available: https://journal.literasisains.id/index.php/storage/article/view/2865%0Ahttps://journal.literasisains.id/index.php/storage/article/download/2865/1339
P. D. Rinanda, B. Delvika, S. Nurhidayarnis, N. Abror, and A. Hidayat, “Perbandingan Klasifikasi Antara Naive Bayes dan K-Nearest Neighbor Terhadap Resiko Diabetes pada Ibu Hamil,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 2, pp. 68–75, 2022, doi: 10.57152/malcom.v2i2.432.
A. H. Nasrullah, “Implementasi Algoritma Decision Tree Untuk Klasifikasi Data Peserta Didik,” J. Pilar Nusa Mandiri, vol. 7, no. 2, p. 217, 2021.
P. Journal, “Performance comparison between Naïve Bayes and k-Nearest Neighbor in predicting student grades,” Humanit. Nat. Sci. J., vol. 4, no. 7, 2023, doi: 10.53796/hnsj476.
S. K. P. Loka and A. Marsal, “Perbandingan Algoritma K-Nearest Neighbor dan Naïve Bayes Classifier untuk Klasifikasi Status Gizi Pada Balita,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 1, pp. 8–14, 2023, doi: 10.57152/malcom.v3i1.474.
A. C. Sitepu, W. Wanayumini, and Z. Situmorang, “Analisis Kinerja Support Vector Machine dalam Mengidentifikasi Komentar Perundungan pada Jejaring Sosial,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 475, 2021, doi: 10.30865/mib.v5i2.2923.
J. J. Pangaribuan, C. Tedja, and S. Wibowo, “Perbandingan Metode Algoritma C4.5 Dan Extreme Learning Machine Untuk Mendiagnosis Penyakit Jantung Koroner,” J. Informatics Eng. Res. Technol., vol. 1, no. 1, pp. 9–15, 2019.
F. M. Hana, “Klasifikasi Penderita Penyakit Diabetes Menggunakan Algoritma Decision Tree C4.5,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 4, no. 1, pp. 32–39, 2020, doi: 10.47970/siskom-kb.v4i1.173.
A. D. Cahyo, “Metode Naive Bayes Untuk Klasifikasi Masa Studi Sarjana,” J. Teknol. Pint., vol. 3, no. 4, 2023, [Online]. Available: http://teknologipintar.org/index.php/teknologipintar/article/view/385%0Ahttp://teknologipintar.org/index.php/teknologipintar/article/download/385/370
N. Nurhachita and E. S. Negara, “A Comparison Between Naïve Bayes and The K-Means Clustering Algorithm for The Application of Data Mining on The Admission of New Students,” J. Intelekt. Keislaman, Sos. dan Sains, vol. 9, no. 1, pp. 51–62, 2020, doi: 10.19109/intelektualita.v9i1.5574.
D. Sebastian, “Implementasi Algoritma K-Nearest Neighbor untuk Melakukan Klasifikasi Produk dari beberapa E-marketplace,” J. Tek. Inform. dan Sist. Inf., vol. 5, no. 1, pp. 51–61, 2019, doi: 10.28932/jutisi.v5i1.1581.
D. Cahyanti, A. Rahmayani, and S. A. Husniar, “Analisis performa metode K-NN pada Dataset pasien pengidap Kanker Payudara,” Indones. J. Data Sci., vol. 1, no. 2, pp. 39–43, 2020, doi: 10.33096/ijodas.v1i2.13.
M. Al Khadafi, Kurnia Paranitha Kartika, and Filda Febrinita, “Penerapan Metode Naïve Bayes Classifier Dan Lexicon Based Untuk Analisis Sentimen Cyberbullying Pada Bpjs,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 725–733, 2022, doi: 10.36040/jati.v6i2.5633.
K. N. N. Dan and A. Genetika, “Sistem rekomendasi musik spotify menggunakan K-NN dan algoritma genetika,” vol. 7, no. 4, pp. 2585–2591, 2023.