Analyzing Customer Sentiment Towards Marketplace Reviews Using Classification Algorithms
DOI:
https://doi.org/10.57152/ijatis.v2i1.1774Keywords:
Classification, Customer, Lazada, Sentiment Analysis, ShopeeAbstract
Numerous online marketplaces like Shopee and Lazada have been developed in Indonesia due to the rapid growth of e-commerce. The Shopee and Lazada apps link buyers and sellers in transactions to purchase and sell products and services. About 100 million users have downloaded both applications as of this writing. Since releasing these programs, the community has voiced various thoughts and complaints. Based on this, user sentiment regarding the Shopee and Lazada applications on the Google Play Store is determined using sentiment analysis using the K-Nearest Neighbor (KNN), Nave Bayes, and Support Vector Machine (SVM) algorithms. Data selection, pre-processing, transformation, data mining, and assessment are the five stages of the Knowledge Discovery in Databases (KDD) approach. For each E-commerce application, 2000 reviews were used as the data. With an accuracy of 85.71% for Gaussian-NB modeling for the Lazada dataset and an accuracy of 85.67% for Bernoulli-NB modeling for the Shopee dataset, the Naive Bayes algorithm has the highest accuracy in experiments on each dataset.
References
L. Yang, Y. Li, J. Wang, and R. S. Sherratt, “Sentiment Analysis for E-Commerce Product Reviews in Chinese Based on Sentiment Lexicon and Deep Learning,” IEEE Access, vol. 8, pp. 23522–23530, 2020, doi: 10.1109/ACCESS.2020.2969854.
F. Xu, Z. Pan, and R. Xia, “E-commerce product review sentiment classification based on a naïve Bayes continuous learning framework,” Inf. Process. Manag., vol. 57, no. 5, p. 102221, 2020, doi: 10.1016/j.ipm.2020.102221.
X. Lin, “Sentiment Analysis of E-commerce Customer Reviews Based on Natural Language Processing,” ACM Int. Conf. Proceeding Ser., pp. 32–36, 2020, doi: 10.1145/3436286.3436293.
S. W. Iriananda, R. P. Putra, and K. S. Nugroho, “Analisis Sentimen Dan Analisis Data Eksploratif Ulasan Aplikasi Marketplace Google Playstore,” 4th Conf. Innov. Appl. Sci. Technol. (CIASTECH 2021), no. Ciastech, pp. 473–482, 2021.
S. A. Aaputra, Didi Rosiyadi, Windu Gata, and Syepry Maulana Husain, “Sentiment Analysis Analysis of E-Wallet Sentiments on Google Play Using the Naive Bayes Algorithm Based on Particle Swarm Optimization,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 3, pp. 377–382, 2019, doi: 10.29207/resti.v3i3.1118.
S. Fransiska and A. Irham Gufroni, “Sentiment Analysis Provider by.U on Google Play Store Reviews with TF-IDF and Support Vector Machine (SVM) Method,” Sci. J. Informatics, vol. 7, no. 2, pp. 2407–7658, 2020, [Online]. Available: http://journal.unnes.ac.id/nju/index.php/sji
M. I. Ahmadi, F. Apriani, M. Kurniasari, S. Handayani, and D. Gustian, “Sentiment Analysis Online Shop on the Play Store Using Method Support Vector Machine (Svm,” Semin. Nas. …, vol. 2020, no. Semnasif, pp. 196–203, 2020, [Online]. Available: http://jurnal.upnyk.ac.id/index.php/semnasif/article/view/4101
E. H. Muktafin, K. Kusrini, and E. T. Luthfi, “Analisis Sentimen pada Ulasan Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing,” J. Eksplora Inform., vol. 10, no. 1, pp. 32–42, 2020, doi: 10.30864/eksplora.v10i1.390.
L. B. Ilmawan and M. A. Mude, “Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store,” Ilk. J. Ilm., vol. 12, no. 2, pp. 154–161, 2020, doi: 10.33096/ilkom.v12i2.597.154-161.
J. W. Iskandar and Y. Nataliani, “Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1120–1126, 2021, doi: 10.29207/resti.v5i6.3588.
R. Mukarramah, D. Atmajaya, and L. B. Ilmawan, “Performance comparison of support vector machine (SVM) with linear kernel and polynomial kernel for multiclass sentiment analysis on twitter,” Ilk. J. Ilm., vol. 13, no. 2, pp. 168–174, 2021, doi: 10.33096/ilkom.v13i2.851.168-174.
H. P. P. Zuriel and A. Fahrurozi, “Implementasi Algoritma Klasifikasi Support Vector Machine Untuk Analisa Sentimen Pengguna Twitter Terhadap Kebijakan Psbb,” J. Ilm. Inform. Komput., vol. 26, no. 2, pp. 149–162, 2021, doi: 10.35760/ik.2021.v26i2.4289.
F. F. Irfani, “Analisis Sentimen Review Aplikasi Ruangguru Menggunakan Algoritma Support Vector Machine,” JBMI (Jurnal Bisnis, Manajemen, dan Inform., vol. 16, no. 3, pp. 258–266, 2020, doi: 10.26487/jbmi.v16i3.8607.
H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, 2021, doi: 10.34148/teknika.v10i1.311.
A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,” J. Teknoinfo, vol. 14, no. 2, p. 115, 2020, doi: 10.33365/jti.v14i2.679.
F. Luo, “Affective-feature-based Sentiment Analysis using SVM Classifier”.
J. Jabbar, I. Urooj, W. Junsheng, and N. Azeem, “Real-time sentiment analysis on E-Commerce application,” Proc. 2019 IEEE 16th Int. Conf. Networking, Sens. Control. ICNSC 2019, pp. 391–396, 2019, doi: 10.1109/ICNSC.2019.8743331.
S. Rana, “Comparative Analysis of Sentiment Orientation Using SVM and Naïve Bayes Techniques,” no. October, pp. 106–111, 2016.
F. S. Fitri, M. N. S. Si, and C. Setianingsih, “Sentiment analysis on the level of customer satisfaction to data cellular services using the naive bayes classifier algorithm,” Proc. - 2018 IEEE Int. Conf. Internet Things Intell. Syst. IOTAIS 2018, pp. 201–206, 2019, doi: 10.1109/IOTAIS.2018.8600870.
M. T. Akter, M. Begum, and R. Mustafa, “Bengali Sentiment Analysis of E-commerce Product Reviews using K-Nearest Neighbors,” 2021 Int. Conf. Inf. Commun. Technol. Sustain. Dev. ICICT4SD 2021 - Proc., pp. 440–444, 2021, doi: 10.1109/ICICT4SD50815.2021.9396910.
F. Firmansyah et al., “Comparing Sentiment Analysis of Indonesian Presidential Election 2019 with Support Vector Machine and K-Nearest Neighbor Algorithm,” 6th Int. Conf. Comput. Eng. Des. ICCED 2020, pp. 5–10, 2020, doi: 10.1109/ICCED51276.2020.9415767.