Comparison of MAUT and EDAS Methods for News Media Selection on Youtube Platform Using ROC Weighting

Authors

  • Rizki Aulia Putra Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Dandi Eko Prasetyo Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Ahmad Kurniawan Al-Azhar University, Egypt
  • Kahlil Gibran Universitas Komputer Indonesia, Indonesia

Keywords:

News Media, MAUT, EDAS, ROC, Indonesia

Abstract

News media is one of the things that is considered in getting information. In order to avoid issues or news that are not good, especially those smelling of politics in Indonesia, it is necessary to choose which media can be used as a reference, especially on YouTube as an alternative place to watch and get news. This problem can be solved with the help of a decision support system, which can choose an alternative news media with the help of the MAUT and EDAS methods. The alternatives tested for calculation are obtained based on how often the media is trending on YouTube. In future calculations, based on criteria determined from the results of expert interviews, namely transparency, credibility, news sources and subscribers will be tested to get the best news media with the help of ROC weighting. With the criteria that have been determined and the calculation of the MAUT and EDAS methods, getting the best news media ranking results from both methods is CNN Indonesia with a final value of preference 1. These results will be an illustration for the people of Indonesia in sorting out the news on each news media on YouTube.

References

Youtube, “Pedoman Komunitas,” Police, Youtube, 2023.

T. Spangler, “YouTube Now Has 2 Billion Monthly Users, Who Watch 250 Million Hours on TV Screens Daily,” Variety, 2019.

A. Shoufan and F. Mohamed, “YouTube and Education: A Scoping Review,” IEEE Access, vol. 10, no. October, pp. 125576–125599, 2022, doi: 10.1109/ACCESS.2022.3225419.

P. Covington, J. Adams, and E. Sargin, “Deep Neural Networks for YouTube Recommendations,” in Proceedings of the 10th ACM Conference on Recommender Systems, 2016, pp. 191–198.

D. Abul-Fottouh, M. Y. Song, and A. Gruzd, “Examining algorithmic biases in YouTube’s recommendations of vaccine videos,” Int. J. Med. Inform., vol. 140, no. April, p. 104175, 2020, doi: 10.1016/j.ijmedinf.2020.104175.

E. Boudemagh and I. Moise, “News media coverage of refugees in 2016: a GDELT case study,” in Proceedings of the International AAAI Conference on Web and Social Media, 2017, vol. 11, no. 1, pp. 743–750.

K. Buckingham, J. Brandt, W. Anderson, A. Luiz Fernando do, and R. Singh, “The untapped potential of mining news media events for understanding environmental change,” Curr. Opin. Environ. Sustain., vol. 45, pp. 92–99, 2020, doi: 10.1016/j.cosust.2020.08.015.

S. A. Khan, M. H. Alkawaz, and H. M. Zangana, “The Use and Abuse of Social Media for Spreading Fake News,” 2019 IEEE Int. Conf. Autom. Control Intell. Syst. I2CACIS 2019 - Proc., no. June, pp. 145–148, 2019, doi: 10.1109/I2CACIS.2019.8825029.

A. Matheven and B. V. D. Kumar, “Fake News Detection Using Deep Learning and Natural Language Processing,” in 2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI), 2022, pp. 11–14. doi: 10.1109/ISCMI56532.2022.10068440.

M. M. Talha, H. U. Khan, S. Iqbal, M. Alghobiri, T. Iqbal, and M. Fayyaz, “Deep learning in news recommender systems: A comprehensive survey, challenges and future trends,” Neurocomputing, vol. 562, p. 126881, 2023, doi: https://doi.org/10.1016/j.neucom.2023.126881.

G. Rediske, J. C. M. Siluk, L. Michels, P. D. Rigo, C. B. Rosa, and G. Cugler, “Multi-criteria decision-making model for assessment of large photovoltaic farms in Brazil,” Energy, vol. 197, p. 117167, 2020, doi: 10.1016/j.energy.2020.117167.

D. Asante, Z. He, N. O. Adjei, and B. Asante, “Exploring the barriers to renewable energy adoption utilising MULTIMOORA- EDAS method,” Energy Policy, vol. 142, no. 2006, p. 111479, 2020, doi: 10.1016/j.enpol.2020.111479.

S. Mete, “Assessing occupational risks in pipeline construction using FMEA-based AHP-MOORA integrated approach under Pythagorean fuzzy environment,” Hum. Ecol. Risk Assess. An Int. J., vol. 25, no. 7, pp. 1645–1660, Oct. 2019, doi: 10.1080/10807039.2018.1546115.

D. Maharani and A. Nata, “Perbandingan Metode Mfep Dan Maut Dalam Seleksi Calon Peserta Olimpiade Sains Nasional (Osn),” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 6, no. 3, pp. 247–252, 2020, doi: 10.33330/jurteksi.v6i3.793.

A. Karim, S. Esabella, M. Hidayatullah, and T. Andriani, “Sistem Pendukung Keputusan Aplikasi Bantu Pembelajaran Matematika Menggunakan Metode EDAS,” Build. Informatics, Technol. Sci., vol. 4, no. 3, 2022, doi: 10.47065/bits.v4i3.2494.

N. L. Saragi, R. A. A. Saragih, A. N. Halawa, and E. Bu’ulolo, “Penerapan Metode EDAS Dan Pembobotan ROC Rekomendasi Susu Formula Untuk Bayi Alergi Susu Sapi,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 6, no. 1, pp. 791–800, 2022, doi: 10.30865/komik.v6i1.5768.

R. N. Sari and R. S. Hayati, “Penerapan Metode Multi Attribute Utility Theory (MAUT) Dalam Pemilihan Rumah Kost,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 3, no. 2, p. 243, 2019, doi: 10.30645/j-sakti.v3i2.144.

M. I. Nasution, A. Fadlil, and S. Sunardi, “Perbandingan Metode Smart dan Maut untuk Pemilihan Karyawan pada Merapi Online Corporation,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 6, p. 1205, 2021, doi: 10.25126/jtiik.2021863583.

Ramadiani, H. R. Hatta, N. Novita, and Azainil, “Comparison of two methods between TOPSIS and MAUT in determining BIDIKMISI scholarship,” Proc. 3rd Int. Conf. Informatics Comput. ICIC 2018, no. 432, pp. 1–6, 2018, doi: 10.1109/IAC.2018.8780455.

M. Keshavarz Ghorabaee, E. K. Zavadskas, L. Olfat, and Z. Turskis, “Multi-Criteria Inventory Classification Using a New Method of Evaluation Based on Distance from Average Solution (EDAS),” Informatica, vol. 26, no. 3, pp. 435–451, Jan. 2015, doi: 10.15388/Informatica.2015.57.

A. Rifqi, R. T. Aldisa, F. Teknologi, K. Dan, and U. Nasional, “Analisa Perbandingan Metode MAUT dan Metode TOPSIS Dengan Menggunakan Pembobotan ROC Dalam Sistem Pendukung Keputusan Pemilihan Calon Kepala Desa,” vol. 4, no. 4, pp. 1413–1422, 2023, doi: 10.47065/josh.v4i4.3829.

A. G. Simorangkir, F. Saidah, and M. Mesran, “Penerapan Metode Maut, Copras Dan Edas Dalam Pemilihan Media Pembelajaran Online Di Masa Pandemic Covid-19,” J. Teknol. Inf. Mura, vol. 14, no. 1, pp. 46–56, 2022, doi: 10.32767/jti.v14i1.1580.

M. Mihuandayani, R. Arundaa, and V. Tamuntuan, “Decision Support System for Employee Recruitment of A Company Using Multi Attribute Utility Theory,” 2020 2nd Int. Conf. Cybern. Intell. Syst. ICORIS 2020, 2020, doi: 10.1109/ICORIS50180.2020.9320817.

H. Gunawan and H. Ramadhan, “Increased Accuracy of Selection High Performing Employees Using Multi Attribute Utility Theory (MAUT),” 2018 6th Int. Conf. Cyber IT Serv. Manag. CITSM 2018, no. CITSM, pp. 1–4, 2019, doi: 10.1109/CITSM.2018.8674060.

G. T. Mareti and A. T. Ayunda, “Komparasi Metode Maut dan Moora dalam Pemilihan Sunscreen untuk Kulit Menggunakan Pembobotan ROC,” Build. Informatics, Technol. Sci., vol. 5, no. 2, 2023, doi: 10.47065/bits.v5i2.4313.

S. K. Zega, A. S. Harahap, H. H. Sihite, and I. Saputra, “Sistem Pendukung Keputusan Aplikasi Nobar Online Terbaik Dengan Menerapkan Metode EDAS Dengan Pembobotan ROC,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 6, no. November, pp. 809–818, 2022, doi: 10.30865/komik.v6i1.5774.

Published

2025-09-04