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Abstract 

The demand for renewable energy in Indonesia continues to increase in line with the government's efforts to promote a 

sustainable energy transition. One of the rapidly growing technologies is On-Grid Solar Power Plants (PLTS), which rely 

on solar energy as their primary source. However, variations in solar irradiation and environmental factors cause 

fluctuations in the system's performance, potentially affecting its efficiency and reliability. Therefore, a robust method is 

needed to accurately predict system performance, supporting maintenance and operational optimization. This study applies 

the Seasonal Autoregressive Integrated Moving Average (SARIMA) method as a time series analysis approach to predict 

the Performance Ratio (PR) of PLTS based on historical data and solar irradiation variables. SARIMA was chosen because 

stationarity tests revealed a significant seasonal pattern that conventional ARIMA models cannot effectively handle. By 

considering seasonal factors, SARIMA provides a more accurate estimation of PR trends and fluctuations. This research 

aims to detect potential anomalies early, identify recurring operational patterns, and improve PLTS system monitoring 

efficiency. Model evaluation results show that SARIMA has higher accuracy than ARIMA in capturing seasonal patterns in 

PR data. Implementing this model can assist PLTS operators in making more data-driven decisions, optimizing 

maintenance strategies, and ensuring the reliability of renewable energy systems. These findings contribute to the 

development of more efficient energy management strategies and support the sustainability of solar energy utilization in 

Indonesia. 
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1. Introduction  

 

With the increasing demand for renewable energy in Indonesia, On-Grid Solar Power Plants (PLTS) have 

become a key solution for providing a sustainable and environmentally friendly electricity supply. Indonesia 

has enormous solar energy potential, with an average solar radiation intensity of 4.8 kWh/m² per day in most 

regions, making it one of the countries with the largest solar energy potential in Southeast Asia (IRENA, 2022) 

[1]. According to data from the Ministry of Energy and Mineral Resources (ESDM), the installed capacity of 

PLTS in 2021 reached 207.2 MW and is expected to increase to 6,500 MW by 2025, in line with the National 

Energy Plan (RUEN) [2][3]. However, a major challenge in the development of On-Grid PLTS is the 

uncertainty in system performance caused by variations in solar irradiation and environmental conditions. 

Therefore, it is crucial to conduct accurate performance analysis to optimize the use of this energy source. 

The main issue in PLTS operation lies in performance uncertainty due to variability in environmental and 

technical factors. One of the key indicators for evaluating system efficiency is the Performance Ratio (PR), 

which reflects the comparison between the electricity generated and the received solar irradiation potential 

[4][5]. PR values can be used to detect anomalies or system performance degradation; however, traditional 

approaches often rely on static analysis, which are less effective in capturing long-term changes. Hence, a more 

advanced analysis approach using historical data, such as Time Series Analysis with the Autoregressive 

Integrated Moving Average (ARIMA) model, is needed to enable early prediction of potential issues [6]. In 
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this study, the ARIMA method is applied to analyze collected historical data to recognize patterns or trends 

and detect anomalies that may indicate problems within the system. 

Previous research has highlighted the importance of time series-based analysis in monitoring PLTS 

performance, but most studies have employed simple methods such as Moving Averages or linear regression, 

which do not account for the complexity of data patterns. For instance, in the study by Murad Al-Omary et al. 

(2021), only Moving Average was used to analyze PLTS performance over a specific period, which proved 

less effective in detecting anomalies or non-linear patterns [7][8]. This study aims to address this gap by 

applying the ARIMA method, which is capable of identifying complex pattern changes in historical data, thus 

yielding more accurate predictions. 

This research is based on various relevant studies to support the analysis and prediction of PLTS 

performance. Studies [6] and [9] have demonstrated the effectiveness of the ARIMA method in predicting daily 

total energy in PLTS systems, proving that this approach can capture complex temporal patterns to improve 

prediction accuracy. Study [10] further integrates feature engineering techniques to enhance the predictive 

capabilities of models in solar-based microgrid systems, providing a foundation for developing adaptive data-

driven systems. In a real-time context, [11] emphasizes the importance of time series-based predictions to 

improve operational efficiency and enable early detection of potential problems. 

The main objective of this study is to apply the ARIMA method to predict potential issues or anomalies in 

PLTS based on historical and irradiation data. Theoretically, this research is expected to contribute to the 

development of ARIMA-based historical data analysis methods in the renewable energy sector. Practically, the 

results can assist PLTS operators in improving system efficiency and supporting the achievement of national 

renewable energy targets. Moreover, the developed analysis is expected to enhance the reliability and 

operational efficiency of PLTS, thereby supporting Indonesia’s transition toward cleaner and more sustainable 

energy. 

 

2. Materials and Method  

The research begins with a literature review to understand various concepts and methods of ARIMA and 

SARIMA [1]-[28]. Subsequently, data is collected from a pyranometer and kWh meter as the main sources of 

information related to solar irradiance and the electrical energy produced. Once the data is gathered, analysis 

and modeling are carried out using the ARIMA method to identify patterns and trends in the time series data. 

The results of this analysis are then obtained and further examined to ensure the accuracy of the model. 

Figure 1. Research Methodology 
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2.1 Solar Power Plant 

A Solar Power Plant (PLTS) is a system that converts sunlight into electrical energy using photovoltaic 

technology. The efficiency and energy output of a PLTS are greatly influenced by the intensity of solar 

irradiance, temperature, and surrounding weather conditions [11]. The development of PLTS has become 

increasingly crucial in line with the growing global demand for reliable and environmentally friendly 

renewable energy sources, in order to reduce dependence on fossil fuels [12]. 

2.2 Historical Data 

Historical data refers to a collection of data that records specific events or values that have occurred over 

a certain period in the past. In the context of Solar Power Plants (PLTS), this data includes solar irradiance, 

which represents the amount of energy received by solar panels from sunlight over a specific period, as well 

as environmental temperature and energy production data. All of this information is essential for analyzing 

system performance and predicting future energy output [13]. 

2.3 Irradiance Value 

Irradiance is the amount of solar radiation energy received on a specific surface area per unit of time, 

typically measured in watts per square meter (W/m²). In the context of Solar Power Plants (PLTS), irradiance 

affects how much energy can be generated by solar panels and is influenced by factors such as weather 

conditions, the position of the sun, time, and panel orientation [14]. The following is the formula used to 

calculate irradiance value. 

𝐸 = 𝐺 ×  𝐴 ×  𝜂     (1) 

Description : 

E = electrical energy produced (kWh) 

G = average solar irradiance (W/m²) 

A = PV module area (m²) 

η = PV module efficiency (%) 

2.4 Performance Ratio 

The Performance Ratio (PR) is a crucial performance indicator used to evaluate the efficiency of a Solar 

Power Plant (PLTS). PR measures the system’s effectiveness in converting solar energy into electrical energy 

by comparing the actual amount of energy produced with the maximum possible energy output based on solar 

irradiance data [15]. The formula to calculate the performance ratio is as follows: 

 

𝑃𝑅 =   
𝐴𝑐𝑡𝑢𝑎𝑙 𝑘𝑊ℎ

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑘𝑊ℎ
 𝑥 100%    (2) 

Description : 

Actual kWh : The energy (Total Active Power) generated within a specific time period. 

Expected kWh : The energy that should have been generated by the system based on irradiance (solar 

radiation) data and system capacity. 

 

Rumus Expected kWh 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑘𝑊ℎ = 𝑊𝑖𝑑𝑒𝐴𝑟𝑒𝑎(𝑚2) 𝑥 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 (𝑘𝑊ℎ/𝑚^2 ) 𝑥 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑃𝑉 (%)    (3) 

 

Description : 

Wide Area (m²)  :The total installed surface area of the solar panels (m²). 

Cum Irradiance (kWh/m²) :The total amount of solar energy received (kWh/m²). 

Efficiency PV (%) : The efficiency of the PV module (%). 

2.5 Time Series Analysis 

Time Series Analysis is a statistical method used to analyze data observed at specific time intervals, with the 

aim of understanding historical patterns, trends, seasonality, and fluctuations in the data [16]. In the context of 

PLTS, time series analysis is essential because solar energy production is influenced by time-based factors 

such as solar irradiance, ambient temperature, and weather patterns. Seasonal patterns and annual trends can 

significantly affect the efficiency of PLTS [17]. Time series data often form various data patterns. 

2.6 Stasionarity 

Data is considered stationary if it does not fluctuate over time. Stationary data has constant mean and variance 

over time and shows no upward or downward trends. Non-stationary data must undergo transformations to 
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achieve stationarity in terms of mean and variance, in order to minimize modeling errors and ensure the model's 

effectiveness [18]. 

2.7 Augmented Dickey Fuller Test 

The Augmented Dickey-Fuller (ADF) test is a statistical test used to determine the presence of a unit root in a 

time series. This test is used to assess whether a time series is stationary or not. The ADF test is represented 

by the following formula: 

 

∆𝑌𝑡 = 𝛼 + 𝛽𝑡 + 𝛾𝑌𝑡−1 + ∑ 𝛿𝑖∆𝑌𝑡−𝑖
𝑝
𝑖=1 +∈𝑡    (4) 

Description : 

∆Yₜ = Yₜ - Yₜ₋₁ : Difference between the current and previous value 

α  : Constant term in the regression equation 

βt  : Time trend coefficient (used if the data shows a trend) 

γYₜ₋₁ : Coefficient of the lagged dependent variable, indicates presence of unit root (non-stationarity) 

∑(δᵢ ∆Yₜ₋ᵢ) : Additional lag components to handle autocorrelation 

εₜ  : Error term assumed to be white noise (random and uncorrelated) 

2.8 Autocorrelation Function 

The Autocorrelation Function (ACF) is a statistical tool used to measure the degree of correlation between a 

time series and its own lagged versions at different time intervals [19]. It provides insight into how past 

values of a dataset relate to current values. The ACF for lag k is calculated as: 

𝜌𝑘 =
∑ (𝑌𝑡−�̅�)(𝑌𝑡−𝑘−�̅�)𝑛

𝑡=𝑘+1

∑ (𝑌𝑡−�̅�)2𝑛
𝑡=1

    (5) 

Description : 

𝑌𝑡 : data at time t 

�̅� : Mean of the entire dataset 

𝑛 : Total number of observations 

𝑘 : Number of lags measured 

2.9 Partial Autocorrelation Function 

The Partial Autocorrelation Function (PACF) is a statistical tool used to measure the correlation between a 

variable and its own lag, after removing the effects of the intervening lags. PACF gives a clearer picture of 

the correlation between two time points by eliminating the influence of closer lags. PACF is calculated using 

the Yule-Walker equations [19], expressed in matrix form as: 

 

[
 
 
 
 

1 𝜌1 𝜌2 ⋯ 𝜌𝑘−1

𝜌1 1 𝜌1 ⋯ 𝜌𝑘−2

𝜌2 𝜌1 1 ⋯ 𝜌𝑘−3

⋮ ⋮ ⋮ ⋱ ⋮
𝜌𝑘−1 𝜌𝑘−2 𝜌𝑘−3 ⋯ 1 ]

 
 
 
 

[
 
 
 
 
∅𝑘,1

∅𝑘,2

∅𝑘,3

⋮
∅𝑘,𝑘]

 
 
 
 

=

[
 
 
 
 

𝜌𝑘

𝜌𝑘−1

𝜌𝑘−2

⋮
𝜌1 ]

 
 
 
 

   (6) 

 

Description : 

𝑝𝑘    :ACF value at lag k 

𝜙𝑘,𝑘 : PACF coefficient for lag k 

2.10  Forecasting 

Forecasting aims to predict future conditions by analyzing past data as a reference, enabling the estimation of 

future electricity demand. Accurate load forecasting models play a crucial role in the planning and operation 

of power systems. This helps understand electricity consumption trends so that future usage can be managed 

more efficiently [20]. 

2.11 Research Accuracy 

1. Root Mean Square Error 

Root Mean Square Error (RMSE) is a statistical metric used to evaluate the accuracy of prediction 

or estimation models. RMSE calculates the average error between predicted values (ŷ) and actual values 
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(y) by squaring the differences, averaging them, and then taking the square root. This metric is easy to 

interpret because the result is in the same scale as the original data [22]. The formula for RMSE is: 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ {𝑌𝑡 − �̂�𝑡}2𝑛

𝑡=1      (7) 

Description:  

n = total number of observations 

Yt = actual data at time t 

2. Mean Square Error 

Mean Squared Error (MSE) is a method used to evaluate forecasting accuracy by measuring the errors 

between predicted and actual values. In MSE, each error is squared, summed, and divided by the number 

of observations. This method places greater emphasis on larger errors due to the squaring process. The 

formula for MSE is as follows [17]. 

 

𝑀𝑆𝐸 =
1

𝑛
∑ {𝑌𝑡 − �̂�𝑡}2𝑛

𝑡=1      (7) 

Description:  

n = total number of observations 

Yt = actual data at time t 

3. Mean Absolute Percentage Error 

Mean Absolute Percentage Error (MAPE) is a metric used to evaluate relative error. This method is 

especially useful when the predicted variable plays a key role in improving forecasting accuracy. In MAPE 

calculation, the error in each period is divided by the actual value of that period. The average of these 

percentage errors is then computed. MAPE is widely accessible because it provides clear information on 

how much the forecasted values deviate from the actual data. The following is the formula for MAPE [22]: 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

𝑌𝑡 −�̂� 

�̂�
 × 100%𝑛

𝑡=1     (8) 

Description:  

n = total number of observations 

Yt = actual data at time t 

There is also an analysis of MAPE values as shown in the table below [23]: 

 

Table 1: Scale of Perform Forecasting [23] 

Rentang Nilai MAPE Arti Nilai 

<10% Very Good Forecasting 

10-20% Good Forecasting 

20-50% Reasonable Forecasting 

>50% Poor Forecasting 

 

Table 1 explains the range of MAPE values obtained from average forecasting calculations. If the 

MAPE value is less than 10%, the forecast is considered very good and does not require re-forecasting. A 

MAPE value between 10% and 20% is categorized as good. If the MAPE is between 20% and 50%, the 

forecasting ability is considered acceptable. However, if the MAPE value exceeds 50%, the forecast is 

classified as poor, and re-forecasting should be conducted until a lower MAPE value is achieved. 

2.12 Arima 

ARIMA Method (Autoregressive Integrated Moving Average) is a commonly used technique for 

forecasting future events. This method was developed by Box and Jenkins [24]. ARIMA combines two 

different approaches: the Autoregressive (AR) method and the Moving Average (MA) method. According to 

Box and Jenkins, there are four stages in the ARIMA method: identification through time series plotting, 

parameter determination using ACF and PACF, model testing, and time series value estimation [19][25]. 

ARIMA Notation (Autoregressive Integrated Moving Average) is used to describe a statistical model 

applied in time series analysis. ARIMA models are often used to forecast time series data based on historical 

patterns. The ARIMA notation is typically written as ARIMA(p, d, q), where: 
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1. 𝑝 (Autoregressive): The number of lags used in the autoregressive model. It indicates the relationship 

between current and past values.  

2. 𝑑 (Integrated): The degree of differencing needed to make the time series stationary (data with stable 

fluctuations over time).  

3. 𝑞 (Moving Average): The number of lagged forecast errors in the prediction model. This accounts for 

past noise or errors to improve accuracy.  

ARIMA modeling consists of two forms: non-seasonal ARIMA, which is not significantly affected by 

seasonal factors, and seasonal ARIMA, which is an extension designed to handle time series data with seasonal 

or periodically recurring patterns. This model captures the seasonal components in data that cannot be 

explained by a standard ARIMA model. Below is the general form of the non-seasonal ARIMA model 

expressed in the following equation [26]:   

 

(1 − 𝐵)(1 − 𝜑1𝐵)𝑌𝑡 =  𝜇′ + (1 − 𝜃1𝐵)𝑒𝑡     (9) 

Keterangan:  

Yt = First ARIMA variable 

𝜇′ = Constant  

𝑒𝑡 = Error at time t 

B = Variable coefficient 

𝜑1, 𝜃1 = SARIMA parameter 

 

The next ARIMA model is the seasonal ARIMA model, which is an extension of the standard ARIMA 

model designed to handle time series data with seasonal or periodic patterns. This model captures the seasonal 

components in data that cannot be explained by a regular ARIMA model. This is commonly referred to as 

Seasonal ARIMA (SARIMA), and its general form is as follows [26]: 

 

 

𝑌𝑡 = 𝜇 + ∑ 𝜙𝑖𝑌𝒕−𝑖
𝑝
𝑖=1 + ∑ 𝜃𝒋𝜀𝒕−𝒋

𝑞
𝒋=1 + ∑ 𝛷𝑘𝑌𝒕−𝑘𝑚

𝑃
𝑘=1 + ∑ 𝛩𝒍𝜀𝒕−𝒍𝒎

𝑄
𝒍=1 + 𝜀𝒕 (10) 

Description :  

Yt = Observed value at time t 

𝜇 = Process mean 

𝜙𝑖 = AR coefficients 

𝜃𝒋 = MA coefficients 

Φk = Seasonal AR coefficients 

𝛩𝒍 = Seasonal MA coefficients 

𝑒𝑡 = Error at t  

 

SARIMA is denoted as: 

 

𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) × (𝑃, 𝐷, 𝑄, 𝑠)    (11) 

 

Description: 

p = autoregressive order (From PACF)  

d = order differencing (From stationarity test )  

q = moving average order (from ACF)  

P,D,Q,s = Seasonal Components 

2.13  Python 

Python was first developed by Guido van Rossum in 1991. The main goal of Python's development was to 

create a simple and readable language that supports various programming paradigms, such as object-oriented, 

functional, and procedural programming [28]. 

 

3. Results and Discussion  

Irradiance data refers to the solar radiation received by solar panels for conversion into electrical energy. 

This study uses a PVmet75 sensor to measure irradiance. To determine the Performance Ratio (PR) in this 

study, solar irradiance values received by the PV panel are used. The reading interval of this irradiance data 

affects the accuracy of the PR value. Below is the irradiance table for 2024-10-01. 
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Table 2 Rekapitulation Irradiance 2024-10-01 

No Datetime Name Irradiance 

275 
2024-10-01 

10:01:24 
PYN01 688.39 

276 
2024-10-01 

10:02:24 
PYN01 682.39 

277 
2024-10-01 

10:03:24 
PYN01 689.36 

278 
2024-10-01 

10:04:24 
PYN01 715.24 

279 
2024-10-01 

10:05:24 
PYN01 716.55 

280 
2024-10-01 

10:06:24 
PYN01 715.38 

281 
2024-10-01 

10:07:24 
PYN01 702.87 

 

No Datetime Name Irradiance 

328 
2024-10-01 

10:54:24 
PYN01 888.19 

329 
2024-10-01 

10:55:24 
PYN01 931.77 

330 
2024-10-01 

10:56:24 
PYN01 952.46 

331 
2024-10-01 

10:57:24 
PYN01 945.29 

332 
2024-10-01 

10:58:24 
PYN01 944.08 

333 
2024-10-01 

10:59:24 
PYN01 941.35 

334 
2024-10-01 

11:00:24 
PYN01 906.37 

 

 

Based on the irradiance data in Table 2, the average irradiance recorded is 800.48 W/m², with a minimum 

of 513.87 W/m² and a maximum of 952.46 W/m². To calculate the energy produced under average conditions: 

Given a PV panel area of 8686.121346 m² and PV module efficiency of 21.03%, the generated energy is 

14,662.08 W. 

This calculation indicates that under average irradiance conditions, the PV system can generate 

approximately 14,662.08 W. To calculate Performance Ratio (PR), the irradiance value must be in kWh/m², 

thus the irradiance data in W/m² must first be converted. 

After converting irradiance from W/m² to kWh/m², the results are presented in table format to simplify 

analysis and understanding. These values are used to estimate the Expected kWh, a key component in PR 

calculation. 

Table 3 shows the irradiance conversion at several specific time points, providing an overview of solar energy 

intensity variations over time. 

 

Table 3 irradiance conversion 

No Datetime Name solrad 𝛥𝑡 Irradiance 

500 2024-10-01 08:21:24 PYN01 534.4   

501 2024-10-01 08:22:24 PYN01 537.29 0.016667 0.0089548333625227700 

502 2024-10-01 08:23:24 PYN01 551.2 0.016667 0.0091866666966117900 

503 2024-10-01 08:24:24 PYN01 558.41 0.016667 0.0093068332661589400 

504 2024-10-01 08:25:24 PYN01 559.48 0.016667 0.0093246666970616200 

505 2024-10-01 08:26:24 PYN01 565.67 0.016667 0.0094278333640645700 

506 2024-10-01 08:27:24 PYN01 561.61 0.016667 0.0093601665991073300 

507 2024-10-01 08:28:24 PYN01 576.76 0.016667 0.0096126666980003900 

508 2024-10-01 08:29:24 PYN01 581.45 0.016667 0.0096908333649218600 

509 2024-10-01 08:30:24 PYN01 589.6 0.016667 0.0098266665957402400 

510 2024-10-01 08:31:24 PYN01 596.03 0.016667 0.0099338333657139400 

511 2024-10-01 08:32:24 PYN01 590.44 0.016667 0.0098406666987435900 

 

After obtaining the irradiance values in kWh/m², the next step is to calculate the total Cumulative Irradiance 

by summing all irradiance values from 2024-10-01 10:01:24 to 11:00:24, resulting in a total of 5.057545 

kWh/m². The cumulative irradiance value, derived from the sum of irradiance readings during that period, is 

then used to calculate the Expected kWh, which is a key component in the Performance Ratio (PR) formula. 

Below is the Actual kWh data, which will be used in the calculation of the performance ratio. 
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Table 4 Actual data  kWh 

No Datetime Name kwh_eexp 

1 
2024-10-01 

00:00:24 

KWH0

1 

820.465026

9 

2 
2024-10-01 

00:00:24 

KWH0

3 

991.956970

2 

3 
2024-10-01 

00:01:24 

KWH0

3 
991.960022 

4 
2024-10-01 

00:01:24 

KWH0

1 

820.466003

4 

5 
2024-10-01 

00:02:24 

KWH0

1 

820.468017

6 
 

No Datetime Name kwh_eexp 

3078 
2024-10-01 

23:56:25 

KWH0

1 

822.362976

1 

3079 
2024-10-01 

23:56:25 

KWH0

3 
993.809021 

3080 
2024-10-01 

23:56:25 

KWH0

3 
993.809021 

3081 
2024-10-01 

23:57:25 

KWH0

3 

993.812011

7 

3082 
2024-10-01 

23:57:25 

KWH0

3 

993.812011

7 
 

 
The Actual kWh values mentioned above represent part of the total energy received. To obtain the 

daily energy, it is calculated as: energy_end − energy_start, resulting in a total energy of 6617 kWh for 
KWH01 and KWH03 on that day. Before proceeding with the Performance Ratio (PR) calculation, the 
Expected kWh must be determined. Based on the calculations, the expected energy output from the PV 
system is 9238.57 kWh. This value is essential for evaluating the system’s efficiency. 

Once the required values for calculating the PR are obtained, the next step is to compute the daily 
PR, as this study uses a per-day interval for PR analysis. Based on the calculation results, the 
Performance Ratio (PR) of the PV system is 71.62%. This indicates the system’s efficiency in converting 
solar energy into usable electricity. Factors such as temperature, dust, inverter power loss, and weather 
conditions can affect the PR value. 

This research uses a data sample covering four months, from October 1, 2025, to January 31, 2025, 
with a total of 123 PR data entries. Below are several sample performance ratio data points collected 
over the four-month period. 

 

Table 5 Sample Data Performance Ratio 

No Date 

Actual 

Production 

(kWh) 

Expected 

Production 

(kWh) 

Performance 

Ratio (%) 

1 01 October 2024 6677 9238.57279 72.01471103 

2 02 October 2024 6954.6 9558.389246 72.75912103 

3 03 October 2024 7194.47 9827.710992 73.20595819 

29 29 October 2024 7344.98 10030.30477 73.22788461 

30 30 October 2024 6719.25 9182.387235 73.17541537 

31 31 October 2024 6054.49 8184.435333 73.97565933 

32 01 November 2024 6449.51 8680.123759 74.3020512 

33 02 November 2024 5013.27 7043.527544 71.17555754 

34 03 November 2024 4319.61 5698.528651 75.80219851 

42 11 November 2024 4738.03 6531.473171 72.54152128 

44 13 November 2024 6153.55 8940.505885 68.82776075 

60 29 November 2024 7062.26 9684.11549 72.92622653 

61 30 November 2024 6359.38 8381.913673 75.87026361 

62 01 December 2024 7091.87 9810.208788 72.29071423 

63 02 December 2024 5532.66 7267.344092 76.13042578 

64 03 December 2024 2983.53 3783.250772 78.86154474 

65 04 December 2024 3625.61 4572.889752 79.28487666 

66 05 December 2024 4248.25 5428.961644 78.25161198 

67 06 December 2024 2992.33 3763.228475 79.51497018 

90 29 December 2024 5212.7 6965.096437 74.84031337 

91 30 December 2024 6551.59 8952.929928 73.17816684 

92 31 December 2024 5327.73 7008.374953 76.01947721 
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No Date 

Actual 

Production 

(kWh) 

Expected 

Production 

(kWh) 

Performance 

Ratio (%) 

93 01 January 2025 5981.65 8266.018624 72.36434216 

94 02 January 2025 7560.07 10259.91085 73.68553302 

95 03 January 2025 5902.1 7841.407676 75.26837328 

121 29 January 2025 3030.35 3941.098218 76.89100428 

122 30 January 2025 5128.01 6819.656292 75.19455205 

123 31 January 2025 5215.28 7157.086119 72.8687613 

 

From the sample table, it can be analyzed that the average PR is stable but shows fluctuations, ranging 

between 68.82% to 79.51%, with most values between 72% and 76%. Higher PR values occurred on specific 

days, especially in December. The lowest PR was recorded on November 13, 2024 (68.82%), possibly due to 

technical issues or bad weather. Lower PRs were also observed in early October and mid-November. 

In contrast, December saw higher PRs, peaking at 79.51% (December 6), with several days near 78%-79%, 

possibly due to system improvements, better weather, or operational factors. Actual vs. Expected Production 

Pattern: On several days, actual production was close to expected, but most days showed actual production 

falling short. For example, on November 11, 2024, the PR was just 68.82%, indicating suboptimal system 

performance. 

After collecting the PR sample data, it is plotted to observe patterns. Below is the performance ratio curve 

chart based on the collected data. 

 

Figure 1 Monthly Curva PR 

From the curve, it can be seen that daily PR fluctuates significantly each month. October shows a more 

stable pattern with minor changes, while November and January show sharper variations with significant peaks 

and drops. Although December also shows fluctuations, the trend appears higher compared to other months. 

Notable spikes occur in early and late December and mid-January, while sharp drops are seen in mid-November 

and early January. Overall, October and November have lower and more stable PRs, while December and 

January show improvement with more varied patterns. 

From the sample PR curve above, the stationarity of the PR data is then tested using the Augmented 

Dickey-Fuller (ADF) method. Below is the plot of the ADF test. 
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Figure 2 Plot ADF test 

 

The Augmented Dickey-Fuller (ADF) test results on the Performance Ratio (PR) data of the solar power 

system indicate that: 

 

Table 6 Result ADF 

ADF Static : -4.66948  Critical Values      :  

p-value  : 0.000096  1% : 3.48559 

Total 

Lags  : 1  5% : 
2.88574 

Observation : 121  10% : 2.57968 

Information 

Criterion : 
397.0978 

    
 

After conducting the ADF test and confirming that the Performance Ratio data is stationary, the next step is 

to determine the optimal model parameters using Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) analysis to identify suitable values for AR (p), MA (q), and differencing 

(d). ACF measures the correlation between a data point and its previous lags. Below is the ACF and PACF 

analysis plot: 

Figure 3 ACF and PACF analysis plot 

 

The figure above shows the ACF and PACF plots of the analyzed data. ACF illustrates the correlation between 

a current observation and its lagged values across various lags and PACF shows the direct correlation between 

an observation and its lag, after removing the influence of intermediate lags. 

From the ACF plot, it is evident that autocorrelation values remain significant at several initial lags, 

indicating a seasonal pattern in the data. This suggests that a Moving Average (MA) component should be 

included in the SARIMA model, with an appropriate order q. Based on the provided data, ACF values are 

significant at lags 1, 2, and 3, which indicates that a MA model with q = 2 or 3 could be appropriate. 

Meanwhile, the PACF plot shows a sharp decline in correlation after a certain lag, suggesting the need for 

an Autoregressive (AR) component, where the order p is determined by the point where PACF first drops close 

to zero.PACF measures the direct relationship between an observation and its lag by eliminating the effects of 
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intervening lags. Since PACF is significant at lag 1 and 2, but then drops sharply, this suggests that an AR 

model with p = 1 or 2 could be used. Below are the detailed results: 

 

 

Table 7 ACF and PACF Analisys 

Lags ACF Value PACF Value 

0 1 1 

1 0.418492774 0.421923042 

2 0.363883955 0.233435475 

3 0.165811089 -0.061982557 

4 0.168673994 0.063684092 

5 0.2246085 0.179241635 

6 0.270509959 0.144628761 

7 0.271265704 0.077997161 

8 0.247383683 0.060567314 

9 0.173756812 -0.007320581 

10 0.149673748 0.011842763 
 

Lags ACF Value PACF Value 

11 0.2018547 0.120563087 

12 0.257824068 0.132490964 

13 0.17375838 -0.091415296 

14 0.194032984 0.034739546 

15 0.031580764 -0.142042097 

16 0.092158586 0.02683557 

17 0.197782762 0.221422227 

18 0.297219931 0.189573252 

19 0.279879878 0.007096955 

20 0.172647613 -0.109343192 
 

 

Table 7 shows the values of the Autocorrelation Function (ACF) and Partial Autocorrelation Function 

(PACF) at various lags. From the analysis results, it can be observed that the ACF values gradually decrease 

and remain significant at several early lags, indicating the presence of a Moving Average (MA) pattern in the 

data. Meanwhile, the PACF values show a cutoff after the first few lags, suggesting an Autoregressive (AR) 

pattern in the data. 

Based on these results, the selection of parameters p and q in the SARIMA model is carried out by 

observing the point where PACF experiences a cutoff (to determine p) and where ACF shows significant decay 

(to determine q). Additionally, if there is a significant seasonal pattern, the values of P, D, and Q in the 

SARIMA model are also determined by considering the ACF and PACF patterns in data with specific 

periodicity. 

Based on the observed patterns in the plots, the combination of p and q values for the SARIMA model can 

be determined by identifying the point where the ACF and PACF plots show cutoffs or significant decays. This 

information is then used in the parameter search process using the Grid Search method. After obtaining the 

simplified model equation, the next step is to evaluate the accuracy of the model by testing it using Root Mean 

Squared Error (RMSE), Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE). This 

evaluation aims to assess how well the model can represent historical data and predict future values. In addition, 

residual analysis will also be conducted to ensure that the model errors behave as white noise, which means 

there is no systematic pattern left in the residuals. If the test results show that the model still has large errors or 

non-random residuals, then the model needs to be refined by adjusting the parameters (p,d,q) × (P,D,Q,s) or 

trying other optimization techniques. 

The first evaluation is conducted by calculating the RMSE, which measures the average deviation between 

actual and predicted values in the same units as the original data. The smaller the RMSE value, the better the 

model is at predicting data. Then, MSE (Mean Squared Error) is calculated. MSE is often used in model 

optimization processes as it provides an indication of how large the average squared forecasting errors are. 

Additionally, MAPE (Mean Absolute Percentage Error) is used to evaluate forecasting errors as a percentage 

of actual values. 

After obtaining the forecasting results, the predictions are then compared to the actual data using Mean 

Squared Error (MSE), which is square-rooted to obtain RMSE. If the resulting RMSE is smaller than the 

previous best_score, the parameters are stored as the best parameters. 

If a certain parameter combination fails to execute, an error message will appear detailing the cause of the 

failure. After all combinations are tested, the system prints out the best parameter combination along with its 

RMSE value. Finally, the SARIMA model is retrained using the best parameters found. This model can then 

be used for forecasting new data. The results of the evaluation show that: 

Best PDQ: (0, 0, 2, 0, 1, 1, 12) → RMSE: 2.064 

Where: 

RMSE:2.064 

MAPE:2.42% 

MSE: 4.262 

The results of the forecasting model evaluation using SARIMA indicate that the prediction error is 

relatively small, with a Root Mean Squared Error (RMSE) of 2.064, showing that the average deviation 

between actual and predicted values is not large. The Mean Squared Error (MSE) of 4.262 indicates that there 

are some larger errors, but overall they are within acceptable limits. Meanwhile, the Mean Absolute Percentage 



 

               IJEERE-202506(01): 61-78  

     72 

    Time Series Analysis of Solar Power Generation Based on Historical Data and Irradiance Using 

the ARIMA Method (Sopyan et al, 2025) 

Error (MAPE) of 2.42% shows that the level of prediction error is relatively low compared to the actual values, 

indicating that the model is quite good at forecasting. Below is the result of the actual performance ratio versus 

the forecast. 

 

Table 8 the actual performance ratio versus the forecast. 

Date Forcasted PR Actual PR PR (Filled) Error Error % 

2/1/2025 74.730715 76.075704 76.075704 1.344989 1.767961 

2/2/2025 76.384306 77.271025 77.271025 0.886718 1.147543 

2/3/2025 74.512522 77.130778 77.130778 2.618255 3.394566 

2/4/2025 74.446813 75.98166 75.98166 1.534848 2.020024 

2/5/2025 72.854381 71.952241 71.952241 0.90214 1.253804 

2/6/2025 73.000716 79.067572 79.067572 6.066856 7.673001 

2/7/2025 74.099126 77.99095 77.99095 3.891824 4.990097 

2/8/2025 75.201548 78.038493 78.038493 2.836944 3.635314 

2/9/2025 75.514893 75.879831 75.879831 0.364939 0.480943 

2/10/2025 74.967427 78.454825 78.454825 3.487399 4.445104 

2/11/2025 74.765946 76.447017 76.447017 1.681072 2.199003 

2/12/2025 72.950854 0 72.950854 72.95085 inf    

2/13/2025 74.891104 0 74.891104 74.8911 inf    

2/14/2025 76.575125 0 76.575125 76.57513 inf    

2/15/2025 74.512522 0 74.512522 74.51252 inf    

2/16/2025 74.446813 0 74.446813 74.44681 inf    

2/17/2025 72.854381 0 72.854381 72.85438 inf    

2/18/2025 73.000716 0 73.000716 73.00072 inf    

2/19/2025 74.099126 73.994518 73.994518 0.104608 0.141372 

2/20/2025 75.201548 72.550359 72.550359 2.651189 3.654274 

2/21/2025 75.514893 73.433616 73.433616 2.081277 2.834229 

2/22/2025 74.967427 76.604335 76.604335 1.636908 2.136835 

2/23/2025 74.765946 77.194106 77.194106 2.42816 3.145526 

2/24/2025 72.950854 71.890505 71.890505 1.060349 1.47495 

2/25/2025 74.891104 71.191291 71.191291 3.699813 5.197003 

2/26/2025 76.575125 75.654656 75.654656 0.920469 1.216672 

2/27/2025 74.512522 69.928154 69.928154 4.584368 6.555826 

2/28/2025 74.446813 69.856359 69.856359 4.590454 6.571275 

Based on the results of the SARIMA model evaluation using MSE, RMSE, and MAPE metrics, it is evident 

that the model has a fairly good level of accuracy in predicting the Performance Ratio (PR). From the table 

comparing the Forecasted PR and Actual PR values, the model errors vary, with the largest prediction error 

occurring on February 6, 2025, where the error reached 7.67%. Meanwhile, most errors fall within the 1%–5% 

range, indicating that the model performs quite well, although there are still some significant deviations. In 

addition, there are several days where the Actual PR value equals 0, which causes the MAPE value to become 

infinite (inf) due to division by zero. Therefore, to objectively assess the model’s accuracy, the MAPE 

calculation must exclude data with Actual PR = 0. 

Although RMSE and MAPE values are relatively low, the next important step is to perform residual testing 

to ensure that the model errors behave as white noise, meaning they have no specific pattern and are randomly 

distributed. This is essential to confirm that the model has captured all existing patterns in the data and has not 

left any unmodeled structure. If the residuals are random and patternless, the model is considered to have 

captured all available information in the data. The following is the residual visualization. 
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Figure 4 residual visualization 

 

With the results of the Ljung-Box and Jarque-Bera tests shown in the table below: 

 

Table 9 Hasil Uji Ljung-Box dan Jarque-Bera 

Ljung-Box Jarque-Bera 

p-value = 0.32025 > 0.05 (p-value = 0.0 < 0.05) 

 

Based on the residual analysis, the SARIMA model used demonstrates reasonably good performance in 

capturing historical data patterns. This is evident from the residual plot, where most residuals are randomly 

scattered around the zero line, and from the Ljung-Box test result, which indicates that the residuals do not 

exhibit significant autocorrelation (p-value = 0.32025 > 0.05). This means the model errors do not show 

remaining patterns and behave as white noise, which is a strong indication that the model has effectively 

captured the structure in the data. However, the Jarque-Bera test result shows that the residuals are not normally 

distributed (p-value = 0.0 < 0.05), which may indicate the presence of some outliers or structures not fully 

explained by the model. Despite this, the model remains suitable for forecasting purposes, although further 

improvements—such as additional data transformations or reevaluation of model parameters—may be 

beneficial. 

After the SARIMA model is evaluated and its residuals meet the white noise assumption (random and 

patternless), the model can be used for future forecasting. The forecasting process is based on the validated 

SARIMA model equation, where the predicted value Yₜ₊ₕ is calculated through a combination of autoregressive 

(AR), moving average (MA), and seasonal components from the historical data. Based on the forecasting 

results and comparison between Forecasted PR and Actual PR for February 2025, prediction accuracy varies 

throughout the month, with errors ranging from 0.14% to 7.67%. 

1. February 1–9, 2025: Model Relatively Accurate 

1) Errors ranged from 0.48% to 4.99%, indicating fairly good prediction accuracy.  

2) A significant anomaly occurred on February 6, 2025, with an error of 7.67%. 

3) Possible cause: actual PR was higher than predicted (79.07% vs 73.00%), suggesting a sudden 

increase in data not captured by the model. 

2. Period February 12–18, 2025: No Data (Error Inf) 

1) Actual PR = 0, resulting in infinite error (inf).  

2) Possible cause: data recording failure or monitoring system disruption. 

3) Solution: use filled PR values as alternative inputs. 

3. February 19–28, 2025: Stable Model, but with Overestimation 

1) The smallest error occurred on February 19, 2025 (0.14%), indicating an almost perfect prediction. 

2) The highest errors occurred on February 27–28, 2025 (6.55% and 6.57%), indicating model 

overestimation. 

3)  Possible cause: external factors such as poor weather or system degradation not accounted 

for in the SARIMA model. 
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Overall, the SARIMA model successfully captures the historical data patterns with most prediction errors 

falling within reasonable limits. These forecasting results can serve as a basis for short-term predictions of the 

Performance Ratio (PR) for February 2025. However, a few anomalies and external factors caused deviations 

in predictions, particularly on February 6 and February 27–28. Therefore, while the model can be relied on for 

forward-looking predictions, further adjustment for external variables may be necessary to improve forecast 

accuracy. 

 

Table 10 below presents the SARIMA model’s PR forecasting results for February 2025. In this table, the 

Forecasted PR represents the predicted value, while the Lower Bound and Upper Bound indicate the prediction 

range based on the confidence interval, reflecting the potential variability of PR values for each day. 

Table 10 Result of Forecasting SARIMA February 2025 

Date Forcasted PR Lower Bound Upper Bound 

2/1/2025 74.730715 70.576168 78.885262 

2/2/2025 76.384306 72.087758 80.680855 

2/3/2025 74.512522 69.998126 79.026918 

2/4/2025 74.446813 69.932417 78.961209 

2/5/2025 72.854381 68.339985 77.368777 

2/6/2025 73.000716 68.48632 77.515112 

2/7/2025 74.099126 69.58473 78.613522 

2/8/2025 75.201548 70.687153 79.715944 

2/9/2025 75.514893 71.000497 80.029289 

2/10/2025 74.967427 70.453031 79.481823 

2/11/2025 74.765946 70.251591 79.2803 

2/12/2025 72.950854 68.436526 77.465183 

2/13/2025 74.891104 70.205038 79.577171 

2/14/2025 76.575125 71.877327 81.272924 

2/15/2025 74.512522 69.79602 79.229025 

2/16/2025 74.446813 69.73031 79.163316 

2/17/2025 72.854381 68.137878 77.570884 

2/18/2025 73.000716 68.284213 77.717219 

2/19/2025 74.099126 69.382623 78.815629 

2/20/2025 75.201548 70.485046 79.918051 

2/21/2025 75.514893 70.79839 80.231396 

2/22/2025 74.967427 70.250924 79.68393 

2/23/2025 74.765946 70.049483 79.482409 

2/24/2025 72.950854 68.234416 77.667292 

2/25/2025 74.891104 70.010034 79.772175 

2/26/2025 76.575125 71.68279 81.46746 

2/27/2025 74.512522 69.602224 79.42282 

2/28/2025 74.446813 69.536515 79.357111 

 

From the forecasting results presented in Table 10, the PR values are predicted to fluctuate between 72% 

and 76% throughout February 2025. The highest predicted PR is expected on February 14, 2025, with a value 

of 76.58%, while the lowest point is predicted on February 17, 2025, at 72.85%. Overall, the PR values are 

expected to remain stable within a reasonable range, despite some daily fluctuations. 

To evaluate the accuracy of the model, the forecasting results are compared to the actual Performance 

Ratio (Actual PR). The following table presents a comparison between the predicted and actual values, 

including the calculation of absolute error and percentage error to assess how accurately the model can predict 

the PR.Table 11 presents the comparison between Forecasted PR and Actual PR for February 2025. In this 

table: 
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Table 11 Actual Performance Ratio VS Forecasting 

Date Forcasted PR Actual PR PR (Filled) Error  Error % 

2/1/2025 74.730715 76.075704 76.075704 1.344989 1.767961 

2/2/2025 76.384306 77.271025 77.271025 0.886718 1.147543 

2/3/2025 74.512522 77.130778 77.130778 2.618255 3.394566 

2/4/2025 74.446813 75.98166 75.98166 1.534848 2.020024 

2/5/2025 72.854381 71.952241 71.952241 0.90214 1.253804 

2/6/2025 73.000716 79.067572 79.067572 6.066856 7.673001 

2/7/2025 74.099126 77.99095 77.99095 3.891824 4.990097 

2/8/2025 75.201548 78.038493 78.038493 2.836944 3.635314 

2/9/2025 75.514893 75.879831 75.879831 0.364939 0.480943 

2/10/2025 74.967427 78.454825 78.454825 3.487399 4.445104 

2/11/2025 74.765946 76.447017 76.447017 1.681072 2.199003 

2/12/2025 72.950854 0 72.950854 72.95085 inf    

2/13/2025 74.891104 0 74.891104 74.8911 inf    

2/14/2025 76.575125 0 76.575125 76.57513 inf    

2/15/2025 74.512522 0 74.512522 74.51252 inf    

2/16/2025 74.446813 0 74.446813 74.44681 inf    

2/17/2025 72.854381 0 72.854381 72.85438 inf    

2/18/2025 73.000716 0 73.000716 73.00072 inf    

2/19/2025 74.099126 73.994518 73.994518 0.104608 0.141372 

2/20/2025 75.201548 72.550359 72.550359 2.651189 3.654274 

2/21/2025 75.514893 73.433616 73.433616 2.081277 2.834229 

2/22/2025 74.967427 76.604335 76.604335 1.636908 2.136835 

2/23/2025 74.765946 77.194106 77.194106 2.42816 3.145526 

2/24/2025 72.950854 71.890505 71.890505 1.060349 1.47495 

2/25/2025 74.891104 71.191291 71.191291 3.699813 5.197003 

2/26/2025 76.575125 75.654656 75.654656 0.920469 1.216672 

2/27/2025 74.512522 69.928154 69.928154 4.584368 6.555826 

2/28/2025 74.446813 69.856359 69.856359 4.590454 6.571275 

 

Based on the comparison results in Table 11, the SARIMA model is capable of delivering fairly accurate 

predictions, with errors ranging from 0.14% to 7.67%.  

1. The smallest error occurred on February 19, 2025 (0.14%), indicating that the model was almost 

perfect in predicting the PR on that day. 

2. The largest error occurred on February 6, 2025 (7.67%), where the actual PR was significantly higher 

than the forecast (79.07% vs 73.00%).  

3. During the period February 12–18, 2025, Actual PR values were unavailable, resulting in infinite (inf) 

errors. In this situation, Filled PR values were used to replace the missing data. 

4. At the end of the month (February 27–28, 2025), the model tended to overestimate predictions, with 

errors of 6.55% and 6.57%, respectively. 

In addition, to ensure that the method used is optimal, a comparison of the prediction accuracy between the 

ARIMA and SARIMA models was conducted, based on MSE, RMSE, and MAPE, as shown in Table 12 below.  

 

Table 12 Hasil Evaluasi ARIMA vs SARIMA 

Model MSE RMSE MAPE 

ARIMA 4.753 2.180 2.48% 

ARIMA 4.727 2.174 2.47% 

SARIMA 4.928 2.220 2.46% 
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The evaluation results show that the ARIMA model has MSE values of 4.753 and 4.727, with corresponding 

RMSE values of 2.180 and 2.174. Meanwhile, the SARIMA model has an MSE of 4.928 and an RMSE of 

2.220. Based on RMSE and MSE alone, ARIMA appears to perform better. 

However, the MAPE of SARIMA is lower (2.46%) compared to ARIMA (2.48% and 2.47%), indicating that 

SARIMA has a smaller relative error in predicting PR values. 

 

Figure 5 Visualisasi Hasil ARIMA dan SARIMA 

This aligns with the results shown in Figure 5, which illustrates that ARIMA is not as effective as SARIMA in 

capturing seasonal patterns. Therefore, although ARIMA has slightly lower RMSE and MSE, SARIMA is still 

selected in this study because it better captures the seasonal patterns in the PR data and has lower relative error 

on a percentage scale. Even though the SARIMA model has produced reasonably good predictions, there are 

still anomalies and overestimations on certain days. This suggests that while the model can be used for short-

term forecasting, there is still room for further optimization to improve its accuracy, particularly in handling 

external factors that influence PR. 

 

4. Conclusion  

Based on the analysis, the average Performance Ratio (PR) ranges between 72–75%, with some days 

reaching over 77%, especially in early to mid-December. Despite daily fluctuations, the PR trend shows an 

increase in December, although actual production tends to be lower than expected due to weather factors, 

system efficiency, or operational disturbances. The Augmented Dickey-Fuller test confirmed that the data is 

stationary without requiring additional transformation. Forecasting results using the SARIMA model show that 

predicted PR values range from 72.85 to 76.57, with a moderate uncertainty margin of approximately ±4–5 

units. The model effectively captures seasonal patterns and historical trends, producing relatively small errors 

(0.14%–7.67%) and the highest accuracy on February 19, 2025, with an error of only 0.14%. Evaluation metrics 

such as MAE, RMSE, and MAPE were used to measure model performance. Although SARIMA is effective 

in predicting PR, the model does not account for external factors such as weather and environmental conditions 

that may affect solar power system performance. Therefore, ARIMA-based methods are more suitable for 

short- to medium-term forecasting, especially if the PR pattern is relatively stable and not significantly 

influenced by unpredictable external factors. 

To improve accuracy and understanding of seasonal patterns, it is recommended to use a larger sample size, 

ideally covering a 2–5 year period. Furthermore, integrating forecasting methods with other techniques such 

as Random Forest (RF) or Support Vector Regression (SVR) may yield more robust results. Lastly, data 

visualization using Power BI will facilitate better interpretation and effective presentation of forecasting 

results. 
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