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Abstract 

 
Artificial Immune Systems (AIS) belong to a group of computational intelligence methods inspired by the working 

mechanisms of biological immune systems to solve various computational problems. Artificial Neural Networks (ANNs) 

themselves are often used in various fields such as anomaly detection, pattern recognition, cyber and network security, 

task scheduling, process optimization, and data analysis, with the application of various ANN algorithms. In the AIS 

approach, there are four basic algorithms that serve as the main foundation, namely the Negative Selection Algorithm 

(NSA), Artificial Immune Networks (aiNet), Clonal Selection Algorithm (CLONALG), and Dendritic Cell Algorithm (DCA). 

The problem that occurs at this time is that there is still a lack of papers that discuss the main basic algorithms in AIS, 

resulting in difficulties in developing new models of basic algorithms. Apart from that, many other aspects of the natural 

immune system have not been touched due to not yet understanding the basic algorithm of AIS. This paper aims to explain 

the main models and algorithms in AIS above so that in future research, new algorithms can be developed based on the 

basic algorithm as a reference. The results of this paper are a review of the main basic models and algorithms in AIS. 

 
Keyword: Artificial Immune System, Negative Selection, Artificial Immune Network, Clonal Selection, Dendritic Cell. 

 

 

 

1. INTRODUCTION 

Along with the passage of time, knowledge such as in the field of computation is continuously developed to 

address the challenges faced by society. These challenges encompass areas such as health computation, 

economics and trade, decision-making, and others. Researchers continue to advance their expertise and attempt 

to adopt various real-life examples currently available, much like incorporating diverse performance processes 

from the human body.  An illustrative instance of knowledge adopted from the human body's performance 

system, currently popular, includes human intelligence, neural networks, and the latest addition being the 

adoption of insights from the human immune system.  Through the assimilation of such knowledge, the field 

of computation gives rise to disciplines like Artificial Intelligence (AI), Artificial Immune Systems (AIS), and 

Artificial Neural Networks (ANN).  With these developed disciplines, they are integrated into computation, 

enabling computers to address issues akin to human bodily functions. This paper delves into the adoption of 

knowledge, specifically focusing on Artificial Immune Systems. 

 

Artificial Immune System (AIS) is an intelligent computational model that imitates the functioning of the 

human immune system, characterized by autonomy, learning, memory, adaptation, resilience, and 

scalability[1]. AIS utilizes signaling, learning, and memory to accomplish tasks of classification and pattern 

recognition, retaining patterns learned previously[2]. AIS finds extensive application in computer security, 

anomaly detection, Web Mining, the Internet of Things (IoT), Numerical Function Optimization, and 

Combinatorial Optimization[3]. Generally, there are four primary fundamental algorithms within AIS. These 

algorithms include Clonal Selection Algorithm (CLONALG), Dendritic Cell Algorithm (DCA)Artificial 

Immune Network Algorithm (aiNet),and Negative Selection Algorithm (NSA)[4]. It is these foundational 

algorithms that researchers continuously develop further to address existing problems and identify 

shortcomings within the basic algorithms. 

 

In principle, AIS adopts the working system of the immune system, where the immune system will detect any 

foreign objects that enter the body. The immune system will react to these foreign objects to be recognized, 

and automatically, cells within the immune system will form to destroy these foreign objects and store them in 

memory.  If at some point these foreign objects reappear, the immune system can quickly recognize and destroy 
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them. From this working system, it is applied to the algorithms within AIS, which can detect viruses, identify 

computer security vulnerabilities, perform classifications, and more.  This paper will discuss the concepts and 

models of each of the aforementioned basic algorithms so that in future research, basic algorithms within AIS 

can be developed to address the limitations of the foundational algorithms. 

 

2. MATERIALS AND METHOD 

2.1 Immune System 

The human immune system safeguards the body against various types of pathogens, such as harmful bacteria 

and viruses, that can infiltrate the body[1].  The immune system comprises several bioactive molecules, 

cytokines, and proteins, collectively forming a diverse biochemical network that can defend against 

pathogens[5].  To combat viruses and harmful bacteria, the immune system must be capable of recognizing 

and identifying pathogens, each of which possesses molecules known as antigens[6]. Antigens are unique 

structures on pathogens that allow the immune system to recognize different types. When pathogens enter the 

body, the immune system responds through two main mechanisms[7]. An overview of the immune system 

response presented in Figure 1. 

 

 
Figure 1. The immune system responds[8]. 

 

1. Innate Immune Respond, this acts as the first line of defense in the early stages of infection, until the 

pathogen is effectively eliminated. However, under certain conditions, these defenses may fail due to the 

high intensity or number of invading pathogens. In such situations, lymphocytes and adaptive immune 

mechanisms are activated for the specific recognition and elimination of pathogens[8]. 

2. Adaptive Immune Respond, represents an evolution within the immunoglobulin family (antibodies) and 

cells such as B lymphocytes (B cells) and T lymphocytes (T cells)[8]. T cells control the adaptive immune 

response and destroy pathogens and infected cells. Meanwhile, B cells produce antibodies against specific 

antigens. Antibodies are proteins that bind to pathogens. Through these proteins, immune cells can be 

signaled to destroy pathogens[3]. 

2.2 Artificial Immune System 

The Artificial Immune System (AIS) is an adaptive system that mimics the function of the human immune 

system as a model principle in problem-solving for fields such as reinforcement learning, artificial neural 

networks, classification learning systems, computer security, Web Mining, numerical function optimization, 

and genetic algorithms[9]. Essentially, the immune system has several properties, namely[10]. 

1. Detection: This occurs within the immune system when infectious fragments chemically bind to sensory 

receptors on the surface of lymphocyte cells. 

2. Diversity: This is related to non-self bodies of organisms in the immune system, leading the immune system 

to possess a variety of sensory receptors where certain lymphocytes will react to foreign organisms. 

3. Learning: The ability to swiftly detect and eliminate foreign organisms from the body. 

4. Tolerance: This mechanism refers to particles that mark them as part of the body and are stored in the 

chromosomes. 

5. Uniqueness: Each individual processes their immune system using unique vulnerabilities and capabilities. 

6. Recognition of Foreign Organisms: The immune system detects and eliminates harmful molecules that do 

not originate from the body. 
 

AIS is categorized into two domains, namely optimization and classification, with two types of algorithm 

categories: population-based category, where there are Clonal Model and Negative Selection algorithms, and 

network-based category, where there are Continuous Model and Discrete Model algorithms [3]. Clonal Model 

algorithms are commonly used for optimization, while Negative Selection is applied to classification and 



 

E-ISSN: 2775-5754 | P-ISSN: 2797-2712 

 

 

     109 

 

 
   

clustering. Network-based algorithms are commonly utilized for classification. The categories of Artificial 

Immune Systems are presented in Figure 2. 
 

 
Figure 2. Artificial Immune System Categories[3]. 

 

This section will explain the concept of basic algorithms in AIS, namely, Negative Selection Algorithm (NSA), 

Clonal Selection Algorithm (CLONALG), Artificial Immune Network (aiNet), dan Dendritic Cell Algorithm 

(DCA). 

 

2.3 Negative Selection Algorithm 

The Negative Selection Algorithm (NSA) aims to generate immune detection, such as computer security, 

network security, and anomaly detection, based on the 'Random-Discard' model by classifying data, referred 

to as antigens [11]. Essentially, NSA is a large-scale maturation detector (antibody) generated randomly, and 

then the portion covering the self area is discarded (apoptosis) in self-reactive T cells.  If the T-cell set detects 

self-area cells, these cells are eliminated, and immune function is carried out in the process of T-cell maturation. 

Meanwhile, detectors that cannot detect self-antigens will be retained[4]. There is a basic definition in 

processing the NSA algorithm, namely: 

1. Antigen Device, The antigen set can be defined as Ag = {x1, x2, x3, …., xn}, in which xi∈ [0,1], n denotes 

the total number of sample points, xi denotes the normal value of the sample point i, Ag refers to the 

normalized set of values of all sample points. 

2. Self-Antigen and Nonself-Antigen. Self-Antigen is defined as self ∈Ag, representing positive samples, and 

Nonself-Antigen, defined as nonself = Ag, representing negative samples. The area covered by the Self-

Antigen in the range of value space is referred to as the Self-Region, and the area that is not covered is 

referred to as the Nonself-Region. 

3. Affinity. Euclidean distance dist(xi,xj) = √∑ (𝑥𝑖
𝑑 −  𝑥𝑗

𝑑)2𝐷
𝑑−1  between two points refers to the measure of 

affinity that connects them, where xi and xj denotes the i-th sample points and j-th sample points, d denotes 

the feature dimensions of the sample points, D denotes the total number of feature dimensions covered by 

the sample points and is the feature of the d-th dimension of the sample point i-th. 

4. Detector. The detector is denoted by de(zi,ri), where ri denotes the center of a randomly generated detector 

candidate, ri signifies the distance from this center to the nearest self-cell. The circle defined by zi and ri 

corresponds to the maturity level of the detector. 

 

An overview of the process of detector generation to produce data detection in the NSA is presented in Figure 

3. 

 

 
Figure 3. (a) Detector Generation (b) Data Detection[4]. 

 

NSA has limitations as it does not take into account the unbalanced distribution of antigens in the sample space, 

leading to detectors overlapping and causing substantial redundancy.  To address this limitation, in 2003, the 

Real-Valued Negative Selection Algorithm (RNSA) was developed, which distributes detectors in the non-self 

area based on heuristics to optimally maximize coverage area[11]. The advantages of RNSA include increased 

expressive capabilities, the potential to gain high-level knowledge from the resulting detectors, and increased 

scalability under certain conditions. The algorithmic form of RNSA is as follows [12]. 
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Input  : The Self Training set (Train), The Radius of Detector (rd), The number of needed detector 

maxNum. 

Output   : The Detector Set D. 

Step 1  : Initialize the self training set Train. 

Step 2 : Randomly generate a candidate detector dnew. Calculate the euclidean distance between dnew and 

all the selves in Train. If dis(dnew, ag) < rd a+ rs for at least one self antigen ag, execute Step 2; 

if not, execute Step 3. 

Step 3  : Add dnew into the detector set D. 

Step 4  : If the size of D satisfies Nd>maxNum, return D, and the process ends; if not, jump to step 2. 
 

RNSA is continuously developed to enhance the distribution of its detectors for greater optimization. The 

development algorithms stemming from RNSA include the Grid-Based Real-Valued Negative Selection 

Algorithm, the Voronoi Diagram Negative Selection Algorithm, and the Antigen Density Clustering-Based 

Negative Selection Algorithm[13]. 

 

2.4 Artificial Immune Network Algorithm 

The Artificial Immune Network (aiNet) algorithm is designed to reduce and classify separate data by forming 

a network of interconnected antibodies based on affinity levels. From this network, a subset of antibodies with 

the highest affinity for the antigen is selected and cloned in proportion to its value, forming an inversion layer 

according to its affinity. A certain percentage of the cloning results are designated as memory antibodies. If 

two memory antibodies have affinities exceeding the threshold, one of them will be removed from the network. 

Conversely, memory antibodies with affinities to the antigen below the threshold will be eliminated. [14]. An 

illustration of the aiNet algorithm can be seen in Figure 4. 
 

 
Figure 4. The illustration of the aiNet algorithm[14]. 

 

Figure 4(a) shows a dataset consisting of three dense clusters (A, B, C). Figure 4(b) shows each cluster forming 

a cell network, with lines representing connections to link separate clusters and classify different groups within 

the network. The numbers on the memory cells indicate labels, while the numbers on the lines represent 

connection strengths. Generally, the number of memory cells is greater than the number of clusters, but still 

far fewer than the number of samples[15]. The process flow of the aiNet algorithm can be explained as follows 

[14]: 

Input : Antibody Network (Ab), Suppression Threshold (δs), Natural Death Thershold (δd), rate of affinity 

(ζ), Number of best-matching cells taken for each Agi (n), Clone Number Multiper (N). 

Output :  The Worst Individual (r%) and Number of Iterations. 

Step 1 :  Create a random initial population from Ab and initialize the parameters. 

Step 2 :  Clone selection: for each antibody, determine its affinity with the presented antigen. 

Step 3 :  Select (n%) of the highest affinity tissue cells. 

Step 4 : Reproduction (n) of clones of selected cells. The number of offspring of each cell, Nc, is 

proportional to its affinity is fi,j = 1 / Di,j. Where Di,jis the inequality calculated according to the 

euclidean distance, the higher the affinity, the larger the clone size. The total clone size Nc of the 

resulting for each cell in Ab is obtained using the formula: 

  𝑁𝑐 = ∑ 𝑟𝑜𝑢𝑛𝑑(𝑁 −  𝐷𝑖,𝑗 ∗ 𝑁)
𝑛

𝑖=1
 (1) 

Step 5 :  Mutation of each antibody is inversely proportional to affinity, resulting in the mutation set 𝐶𝑘
∗with 

the formula: 

       𝐶𝑘
∗ =  𝐶𝑘 +  𝛼𝑘 (𝐴𝑔𝑗 −  𝐶𝑘);  𝛼 ∝ 1 / 𝑓𝑖,𝑗;  

    k = {1,….,Nc}                                             (2) 

Step 6 :  Calculate the affinity of the antibody enhanced with the antigen. 

Step 7 :  Reselect ζ% of the best antibody (Highest Affinity), place it into the clone memory set. 

Step 8 :  Remove affinity antibodies (Ab - Ag) with an antigen yield lower than the δd threshold (pruning 

threshold). 

Step 9 :  Calculate the affinity of tissue cells (Ab - Ag). 

Step 10 :  Combine the remaining antibodies from the clone memory with all the tissue antibodies. 
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Step 11 :  Determine the entire intercellular affinity network and eliminate antibodies whose affinity for one 

another is lower than the suppression threshold (δs). 

Step 12 :  Replace r% of the worst individuals with randomly generated novels. 

Step 13 :  Repeat step 2 until step 4 until the predefined number of iterations is reached. 
 

The development of the aiNet algorithm is the Optimization Artificial Immune Network Algorithm (Opt-

aiNet), which aims for data processing, optimization learning, and fault diagnosis, enabling noise handling, 

unsupervised learning, and self-organization.  The Opt-aiNet algorithm, in the process of tracking local and 

global optima, must select all cells for cloning in each iteration to maintain local optima, thus requiring 

exploration of the entire space[16]. An overview of the antibody population transformation process in the Opt-

aiNet algorithm can be seen in Figure 5. 

 

 
Figure 5. Transformation of the antibody population for the Opt-aiNet algorithm[17]. 

 

Several algorithms were developed from this Opt-aiNet Algorithm, such as the Artificial Immune Network 

algorithm for Combinatorial Optimization (copt-aiNet). This algorithm is associated with the suppression 

mechanism to find similarities between cells by calculating the minimum number of swap operations required 

to convert the resulting solution[18].  Further more, there is the Artificial Immune Network algorithm for 

Dynamic Optimization (dopt-aiNet) which enhances the robustness of opt-aiNet in quickly handling dynamic 

problems.  This algorithm is designed to improve the mutation operator and suppression mechanism in the opt-

aiNet algorithm[19]. 

 

2.5 Clonal Selection Algorithm 

The Clonal Selection Algorithm (CLONALG) was developed with the intention of addressing multimodal and 

combinatorial optimization problems using the principle of clone selection[20].  CLONALG shares similarities 

with the immune system in the human body in terms of specificity, proliferation (cloning), and variation. In 

the immune system, after being stimulated by antigens, the immune system will produce B cells that can 

generate antibodies. Antibodies effectively eliminate antigens through proliferation (cloning) and variation. 

Antibodies are specific, where the effectiveness of different antibodies depends on the specific antigen they 

are exposed to. B cells are stimulated to become memory cells, so when the same antigen is detected in the 

future, antibodies are rapidly produced to counteract the antigen[21]. The basic principle of applying the clone 

selection algorithm can be seen in Figure 6. 

 
Figure 6. The principle of clonal selection[22]. 
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The process flow of the CLONALG algorithm can be explained as follows [22]. 

Input : The best n antibodies to be selected (n), The size of the population (N), the affinity of an antibody 

(F), The number of copies (nc), The number of randomly generated antibodies (d). 

Output :  Number of Iterations. 

Step 1 : Initialize N antibody set size, number of iterations, number of clones, and relevant parameters. 

Randomly select an antigen from the antigen set and generate a candidate antibody set consisting 

of a memory set and a residue set. 

Step 2 : Calculate the F difference between the respective antibody and antigen in the concentration of the 

candidate antibody, then select the antibody with the highest number. 

Step 3 :  Cloning antibody n and the number of antibody clones that have a positive correlation with their 

affinity for an antigen. 

Step 4 : Mutates the antibodies produced after cloning to create new individuals. The likelihood that the 

mutation is influenced by antibody affinity, the higher the level, the lower the chance of an 

antibody mutation. 

Step 5 : Count the antibodies after the mutation, then select the highest antibody to compare with the 

antibodies in the memory set. The highest antibody compared will be entered into the memory set. 

Step 6 : Evaluate the mutated antibody. Randomly select mutated antibodies to replace with old n 

antibodies. Then the d antibodies that have been randomly selected are added to the next generation 

population. 

Step 7  :  Repeat step 2 for the next iteration. If the number of iterations satisfies the termination conditions, 

the process stops. 
 

The CLONALG algorithm is continuously developed to address its deficiencies. For instance, the Clonal 

Selection Classification Algorithm (CSCA) introduces self-adjustment capabilities, insensitivity to parameters, 

and competitiveness as a classification system for binary pattern recognition datasets.  Furthermore, the 

Adaptive Clonal Selection (ACS) algorithm represents an evolution of parameter-free CLONALG. This 

algorithm is applied in the domain of static function optimization. Additionally, there exists the Lamarckian 

Clonal Selection Algorithm (LCSA), which substitutes the mutation process in CLONALG with local search 

techniques[23]. 

 

2.6 Dendritic Cell Algorithm 

The Dendritic Cell Algorithm (DCA) is an algorithm developed by mimicking the danger theory of cells within 

the body, which involves signals of damage originating from endogenous sources and tissue cells themselves.  

This ensures that the immune system does not respond to its components but rather to potential threats[24]. In 

danger theory, biologically, cells that are in a threatened state will release endogenous signals called danger 

signals, establish danger zones in the vicinity. Antigens within this zone are captured by antigen presenting 

cells, such as macrophages, and then transported to lymph nodes to be presented to lymphocytes. B cells that 

produce antibodies will search for matching antigens in the danger zone to trigger stimulation and clonal 

expansion, while mismatched antigens will not induce stimulation[25]. As for the description of the danger 

theory model is presented in Figure 7. 
 

 
Figure 7. Danger Theory Model [25]. 

 

The Dendritic Cell Algorithm (DCA) performs intrusion detection based on a population of dendritic cells, 

where some dendritic cells are randomly selected to present antigens (sample data) with an unstable number 

of dendritic cells. Subsequently, the antigens are classified as either normal states or anomalous states. DCA is 

widely implemented for anomaly detection, such as network anomalies, virus anomalies, and more. Data in 

DCA can be categorized into three signals[26]:  

1. Pathogen Associated Molecular Pattern (PAMP). It is a signal indicating the presence of anomalies 

associated with the given data instance (antigen). 

2. Danger Signal (DS). It is a signal indicating an abnormal state where the given data instance is below 

PAMP. 

3. Safe Signal (SS). It is a signal indicating a normal state with the given data instance above PAMP. 
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An overview of the Dendritic Cell algorithm process is shown in Figure 8. 

 
Figure 8. Dendritic Cell Algorithm Process [26]. 

 

The process flow of the DCA algorithm can be explained as follows [26]: 

Input : Data Set Training, Pathogen Associated Molecular Pattern (𝑃𝐴𝑀𝑃𝑖), Danger signal(𝐷𝑆𝑖), Safe 

Signals (𝑆𝑆𝑖). 

Output :  Classification of normal and anomaly data. 

Step 1 : Preparation and Initialization, DCA will select the most important features from the input 

training dataset and assign signal categories to be PAMP, SS, and DS. 

Step 2 :  Detection, DCA creates a signal database by combining input signals with antigens using the get-

antigen and get-signal functions. From the input signals, a provisional output is generated, 

representing the concentration value of the costimulatory molecular signal (CSM), the semi-

mature signal value (smDC), and the mature signal value (mDC). Therefore, to compute the 

provisional output signal, the following equation is employed: 
 

𝐶 =
((𝑊𝑃𝐴𝑀𝑃 ∗  ∑ 𝑃𝐴𝑀𝑃𝑖𝑖 ) + (𝑊𝑆𝑆 ∗  ∑ 𝑆𝑆𝑖𝑖 ) + (𝑊𝐷𝑆 ∗  ∑ 𝐷𝑆𝑖𝑖 ))

(𝑊𝑃𝐴𝑀𝑃 +  𝑊𝑆𝑆 + 𝑊𝐷𝑆)
∗

1 + 𝐼

2
 

Step 3 :  Context Assesment, If the value of smDC is greater than mDC, then DC will be in a semi-mature 

context (context = 0, normal); if it is smaller, then DC will be in a mature context (context = 1, 

anomaly). 

Step 4 : Clasification, The calculated values in the cell context are represented by the mature context 

antigen value (MCAV). MCAV is computed by dividing the number of antigens present in the 

mature context, referred to as Nb-mature, by the total number of antigen presentations, referred to 

as Nb-antigen. Subsequently, a comparison is conducted between the MCAV of each antigen and 

an anomaly threshold. The anomaly threshold can be a parameter set by the user or can be 

automatically generated from training or testing data. 

One of the developments in DCA is the QuickReduct Dendritic Cell Algorithm (QR-DCA), which aims to 

improve the signal categorization in order to optimize the classification technique of DCA, because it is able 

to achieve a balance between optimal classification result quality and increased algorithm flexibility regarding 

execution time. 
 

3. RESULT AND DISCUSSION 

This section presents the findings and provides an in-depth discussion of the applied methods and obtained 

results. 
 

3.1 Negative Selection Algorithm 

A case example involves data logs of activity on a server, used by the NSA to detect anomalous activities that 

might indicate an intrusion. Normal data ('self') are the daily activity logs of the server that have been 
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categorized as non-suspicious. The NSA algorithm is then used to generate detectors capable of recognizing 

abnormal activity logs ('non-self'). 
 

First, generate detectors by extracting daily log data from the server, resulting in 1000 random detectors. Next, 

examine each detector against the normal dataset. Remove detectors that match the normal dataset and save 

the detectors that do not match the normal dataset. 
 

Once the detectors are obtained, the next step is to use the remaining detectors to monitor new activity logs. 

The result is that the algorithm will mark logs that match the detectors as anomalies. The process overview of 

the NSA algorithm is shown in Table 1. 
 

Table 1. Process of NSA Anomaly Detection on the Server 

Step  
Number of 

Detector 

Detector 

Removed 

Remaining 

Detector 

Initial Generation 1000 - 1000 
After Dataset Check 1000 950 50 

Monitoring New Data 50 - 50 
 

The visualization result of NSA algorithm process regarding anomaly detection on daily server logs is shown 

in Figure 9. 

 
Figure 9. Anomaly detection graph on server daily log data 

 

3.2 Artificial Immune Network Algorithm 

In a given scenario, A company has a communication network consisting of 8 nodes and various paths that 

data packets can take to be sent from the source node to the target node. The AiNet algorithm is then used to 

find the optimal route that minimizes cost and latency. The data representation of Nodes and paths to be 

processed using the AiNet is shown in Table 2. 
  

Table 2. Node & Path Representation 
Node  Connected Paths Cost Latency 

1 2, 3 $10 5 ms 

2 1, 3, 4 $15 8 ms 
3 1, 2, 4, 5 $12 6 ms 

4 2, 3, 5, 6 $18 10 ms 

5 3, 4, 7 $20 12 ms 
6 4, 7, 8 $25 15 ms 

7 5, 6, 8 $22 13 ms 

8 6, 7 $17 9 ms 
 

The results of optimizing the AINET algorithm for both Node and Path can be visualized in Figure 10.  
 

 
Figure 10. AINET Optimization 



 

E-ISSN: 2775-5754 | P-ISSN: 2797-2712 

 

 

     115 

 

 
   

The graph illustrates the evolutionary process undertaken by AiNet in finding the optimal route. At each 

iteration, AiNet refines the previous solution by adapting effective antibodies and eliminating ineffective ones. 

Ultimately, AiNet generates the best route that meets the criteria of minimal cost and low latency. 

 

Therefore, AiNet can be effectively utilized in routing optimization in communication networks and other 

optimization problems by drawing inspiration from the mechanisms of the human immune system. 

 

3.3 Clonal Selection Algorithm 

A case example where parameter optimization is performed for a machine learning model. Initially, there is a 

small population of random solutions representing the parameter settings. Each solution is evaluated based on 

its performance against the objective function, such as model accuracy. The best solutions are then replicated 

through a clonal process, where individuals with better performance will produce more clones of themselves. 

This process results in a new, higher-quality population. Below is an example showing the population of 

solutions and their performance before and after clonal process in Table 3. 
 

Table 3. Solution Population and Performance Before and After the Clonality Process 

Solution  
Parameter 

1 

Parameter 

2 

Initial 

Performance 

Clone 

Solution 1 0.5 0.7 0.85 2 

Solution 2 0.3 0.9 0.75 1 

Solution 3 0.8 0.6 0.92 3 

 
After the clonality process, the new population will consist of better solutions with potentially greater parameter 

variation. The graph below shows the comparison of solution performance before and after the clonality process 

as shown in Figure 11. 
 

 
Figure 11. Visualization of performance before and after the clonality process 

 

In the graph, it can be seen that after the clonal process, the performance of the solutions has significantly 

improved, indicating that the Clonal Selection Algorithm (CSA) has successfully enhanced the quality of the 

solution population. Thus, the Clonal Selection Algorithm is an effective method for improving and optimizing 

solutions across various problems, including in the context of machine learning model parameter optimization. 

 

3.4 Dendritic Cell Algorithm 

In this case example, DCA (Dendritic Cell Algorithm) is applied to detect anomalies in computer network 

traffic. Network data is categorized into three types of signals: Danger Signal, Safe Signal, and Contextual 

Signal. 

 

After implementing DCA on the collected network data, the algorithm classifies each network activity based 

on the received signals. Activities with more danger signals than safe signals will be marked as anomalies. In 

this test, the network data consists of 1000 activities, of which 100 are simulated anomaly activities. The result 

shows that DCA successfully detects 90 out of 100 anomaly activities with a false positive rate of 5%. The 

form of anomaly detection results from the DCA process above is shown in Table 4.  
 

Table 4. Anomaly Detection Results in Computer Network using DCA 

Category  
Number of 

Activities 

Anomaly 

Detection 

False 

Positive 

Normal Activities 900 45 45 

Anomalous Activities 100 90 0 
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Here is a graph illustrating the distribution of normal and anomaly activities as well as the detection results by 

DCA as shown in Figure 12. 

 
Figure 12. Distribution of Normal and Anomaly Activities 

 
The graphic output illustrates the comparison between the actual amounts of normal and anomalous activities 

with the detection results by DCA. This graph aids in visualizing the effectiveness of the algorithm in 

identifying anomalous activities within the computer network. 

 

4. CONCLUSIONS 

Based on the design of artificial immune systems, both in terms of models and algorithms, research in this field 

continues to evolve to produce more optimal models and techniques. The discussion shows that the four basic 

models and algorithms of artificial immune systems have specific functions. The Negative Selection Algorithm 

(NSA) is widely used for classification and error detection, particularly in computer security to distinguish 

between self and non-self entities. NSA forms a set of pattern detectors trained under normal (non-anomalous) 

conditions to identify new patterns or anomalies. The Clonal Selection Algorithm (CLONALG) is generally 

applied to optimization and pattern recognition problems, similar to genetic algorithms but without 

recombination operators, and is effective in scheduling. Artificial Immune Network algorithms are used for 

clustering, data visualization, and optimization, and can be combined with artificial neural networks, while 

AiNet is often used to determine optimal travel routes. Dendritic cell algorithms are widely used in intrusion 

detection in computer security, including port scanning identification, BOTNET activity, and virus detection. 

 

Currently, various models and techniques have been developed using basic artificial immune system algorithms 

to overcome their limitations. Various case studies have been conducted to demonstrate the application of these 

algorithms in solving real-world problems and analyzing data. From this perspective, some algorithms have 

proven to be more suitable for specific application areas. Thus, the development of artificial immune systems 

is not only based on biological principles and mechanisms but also benefits from integration with other soft 

computing paradigms such as artificial neural networks, fuzzy logic, genetic algorithms, and other algorithms. 
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