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Abstract 

 
This study aims to predict student performance using deep learning models, including Multilayer Perceptron (MLP), 

Convolutional Neural Networks (CNN), Bidirectional Long Short-Term Memory (BiLSTM), and Long Short-Term Memory 

with Attention (LSTM with Attention). The dataset comprises student demographic and educational factors, and the models 

are evaluated using metrics such as MAE, RMSE, R², MSLE, and MAPE. The results show that the CNN model outperforms 

other models, achieving the highest accuracy in predicting student test scores. The MLP model also performs well, while 

the BiLSTM and LSTM with Attention models exhibit lower predictive performance. High MAPE values across models 

suggest a need for alternative metrics in future research. This study highlights the importance of selecting suitable model 

architectures for predictive tasks in education, emphasizing the effectiveness of convolutional layers in capturing complex 

patterns. 
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1. INTRODUCTION  

The academic performance of students is a complex phenomenon influenced by multiple factors, 

including demographic characteristics, family background, and school-related factors [1]–[3]. Understanding 

these influences is crucial for developing effective educational interventions [4]. Despite considerable research 

efforts, the relationship between student performance and these multifaceted factors remains a topic of 

debate[5]. Traditional statistical methods have provided valuable insights but often fall short in capturing the 

nonlinear and intricate relationships within educational data [6]. With advancements in machine learning and 

deep learning, new opportunities arise to model these complexities more effectively, enabling a deeper 

exploration of how variables such as gender, ethnicity, parental education, lunch status, and test preparation 

impact student test scores [7]. Recent developments in artificial intelligence (AI) and deep learning have shown 

promise in various fields, including educational data mining [8]. Advanced models like Convolutional Neural 

Networks (CNN) and Recurrent Neural Networks (RNN) have been successfully employed to uncover patterns 

within large datasets, demonstrating superior predictive capabilities [9]. However, there remains a gap in the 

literature regarding the application of these advanced models to the educational domain, specifically in 

predicting student performance using diverse predictors [10].  

Educational research has traditionally focused on socioeconomic status and family background as key 

determinants of student performance. Parental education, a significant component of this background, has been 

repeatedly shown to correlate with higher academic achievement [11]. Moreover, gender differences have been 

extensively examined, with findings suggesting that boys and girls exhibit varying strengths in subjects like 

mathematics, reading, and writing [12]. School-related factors, including lunch programs and test preparation 

courses, also play a role. Students with access to adequate nutrition and structured test preparation often exhibit 

improved academic performance [13]. While these studies provide a foundational understanding, they often 

employ traditional statistical techniques, limiting their ability to uncover complex interactions among 

predictors. Machine learning approaches, such as Decision Trees and Random Forest, have addressed some 

limitations by improving predictive accuracy and handling nonlinear relationships [14]. However, the literature 

lacks comprehensive analyses using deep learning models, particularly those equipped to handle sequential 

and high-dimensional educational data. 

The increasing reliance on data-driven strategies in education underlines the urgent need for advanced 

analytical tools to interpret complex educational datasets [15]. Traditional methods provide limited insight into 
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the nuanced interplay of diverse factors affecting student performance [16]. With educational systems facing 

growing demands for personalized learning and targeted interventions, it is imperative to explore how deep 

learning models can enhance our understanding and prediction of student outcomes [17]. This urgency is driven 

by the potential of these models to inform policies and practices that can effectively support diverse student 

populations. Machine learning and deep learning have become central to educational data analysis [18]. 

Ensemble methods like Random Forest and Gradient Boosting have gained popularity for their robust 

performance in predictive tasks [19]. Deep learning models, including CNNs and RNNs, offer further 

advancements, capturing complex data patterns through hierarchical and sequential processing [20]. More 

recently, attention mechanisms have been introduced to enhance the interpretability of deep learning models 

by highlighting influential features in the decision-making process [21]. Despite their success in other domains, 

the application of these state-of-the-art models to the domain of student performance prediction remains 

limited.  

Existing studies predominantly utilize traditional statistical and basic machine learning models to 

analyze student performance, often focusing on isolated predictors [22]. There is a lack of research that 

holistically applies deep learning models to account for complex interactions among a comprehensive set of 

predictors [23]–[25]. Additionally, the challenge of interpreting deep learning models within the educational 

context has not been sufficiently addressed. This research aims to fill these gaps by implementing and 

comparing various deep learning models, investigating their predictive capabilities, and examining how 

attention mechanisms can be employed to improve model interpretability. The goal of this research is to 

develop a comprehensive predictive framework for student performance using deep learning models. By 

integrating a diverse set of predictors, including demographic and educational variables, the study aims to 

evaluate the performance of advanced deep learning architectures Deep MLP, Deep CNN, Bidirectional 

LSTM, and LSTM with Attention in predicting student test scores. This framework not only seeks to improve 

predictive accuracy but also strives to enhance the interpretability of the models, providing actionable insights 

into the factors that most significantly impact student outcomes. 

In addition, this study contributes to educational data mining by applying advanced deep learning 

models, including Deep CNN, Bidirectional LSTM, and LSTM with Attention, to the prediction of student 

performance. It offers a comparative evaluation of these models' effectiveness in capturing the complex 

relationships between student test scores and influencing factors. Additionally, this research explores the 

interpretability of these models, enhancing our understanding of how specific variables affect student 

performance. The article proceeds with a methodology section outlining the dataset, feature engineering, and 

model development, followed by an evaluation of the models' performance. The results section presents a 

detailed analysis of the predictive accuracy and interpretability of each model. In addition, we have add 

discussion section in order to explore the implications of the findings for educational practice and policy. 

Finally, the conclusion summarizes the contributions and suggests directions for future research. 

 

2. MATERIALS AND METHOD  

As presented in figure 1, this section provides an in-depth explanation of the dataset used, the 

preprocessing methods applied, the development of the deep learning models, and the evaluation techniques 

employed. The methodology is carefully structured to allow for reproducibility while ensuring a clear 

understanding of the mathematical and computational rigor involved. 

 

2.1. Dataset Description 

The dataset employed in this study consists of 1,000 records, each containing information about a 

student's demographics, parental background, and educational experiences. Each record includes features such 

as the student’s gender, race/ethnicity, parental level of education, lunch status, and participation in a test 

preparation course. The dependent variables are the scores obtained by the students in three academic subjects: 

mathematics, reading, and writing. These scores are considered continuous variables and serve as the targets 

for the regression models. Formally, let ( 𝑋 ) represent the matrix of input features with dimensions ( 𝑁 × 𝑑 ), 

where ( 𝑁 =  1000 ) denotes the number of instances, and ( 𝑑 ) is the number of features for each student. 

The target vector ( 𝑌 ) comprises the test scores for each student, structured as a matrix (𝑌 ∈ 𝑅𝑁×𝟛), where 

each column corresponds to a different subject score. 

 

2.2. Data Preprocessing 

To prepare the dataset for input into the deep learning models, several preprocessing steps were applied 

to ensure that the data is in a suitable format and scale. First, categorical variables including gender, 

race/ethnicity, parental education level, lunch status, and test preparation were transformed using one-hot 

encoding. One-hot encoding converts categorical values into a binary matrix representation, effectively 

allowing the model to process these non-numeric features. Mathematically, for a categorical feature ( 𝐶 ) with 

( 𝑘 ) unique categories, one-hot encoding maps this feature to a binary vector space (𝑅𝑘). Each category 

(𝑐𝑖)𝑖𝑛(𝐶) is transformed into a binary vector (𝑒𝑖) where the ( 𝑖 )-th position is 1, and all other positions are 0. 
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This transformation ensures that categorical data is numerically represented in a way that does not imply any 

ordinal relationship between categories. 

Next, continuous variables representing the student’s scores in mathematics, reading, and writing were 

standardized. Standardization is critical when working with neural networks, as it ensures that each feature 

contributes equally to the model's learning process. The standardization process adjusts each feature to have a 

mean of zero and a standard deviation of one. Given a continuous variable ( 𝑥 ), the standardized value ( 𝑧 ) is 

computed as 𝑧 =
𝑥−μ

σ
 where ( μ) is the mean of ( 𝑥 ) and ( σ) is its standard deviation. This transformation 

results in a new dataset where each feature has a mean of zero and unit variance, preventing any single feature 

from dominating the learning process due to its scale. 

Subsequently, the dataset was split into training and testing sets to facilitate model evaluation. The split 

ratio was set at 80:20, meaning 80% of the data was used for training the models, while the remaining 20% 

was reserved for testing their generalization capabilities. Let (𝑋train) and (𝑋test) denote the training and test 

sets, respectively. The splitting process is defined by a function ( 𝑔 ), where 𝑔(𝑋) = (𝑋train, 𝑋test). This ensures 

that the models are trained on one subset of the data and evaluated on an unseen subset, providing a reliable 

estimate of performance. 

For models such as CNNs and LSTMs, the input data needed to be reshaped to match the expected input 

dimensions. For CNNs, the input was reshaped into a three-dimensional tensor to exploit the convolutional 

operations effectively. Specifically, the reshaped input (𝑋reshape) is defined as 𝑋reshape ∈ 𝑅𝑁×𝑡×𝑓 where ( 𝑁 ) 

is the number of samples, ( 𝑡 ) represents the sequence length, and ( 𝑓 ) is the number of features. This 

restructuring is crucial for the CNN and LSTM models to capture spatial and sequential patterns in the data, 

allowing these architectures to learn more complex relationships within the dataset. 

 

2.3. Model Development 

The study involves developing and evaluating multiple deep learning models, each tailored to predict 

student performance based on the input features. These models include a Deep Multilayer Perceptron (MLP), 

a Convolutional Neural Network (CNN), a Bidirectional Long Short-Term Memory (BiLSTM) network, and 

an LSTM network with an Attention mechanism. The Deep MLP model is structured as a fully connected 

neural network with three hidden layers. Each hidden layer applies a transformation function to its input, 

followed by the ReLU activation function. Formally, the transformation in each hidden layer ( 𝑙 ) is expressed 

as ℎ(𝑙) = ϕ(𝑊(𝑙)ℎ(𝑙−1) + 𝑏(𝑙)) where (𝑊(𝑙)) and (𝑏(𝑙)) are the weight matrix and bias vector for layer ( 𝑙 ), 

(ℎ(𝑙−1)) is the output from the previous layer, and \( \phi \) is the ReLU activation function defined as (ϕ(𝑥) =
max(0, 𝑥)). Dropout regularization is applied to each hidden layer, where a fraction of the neurons is randomly 

set to zero during training. This regularization technique is denoted as ℎdrop
(𝑙)

= ℎ(𝑙) ⋅ mask where the mask is a 

binary vector with each element sampled from a Bernoulli distribution with a success probability of ( 1 −  𝑝 ), 

where ( 𝑝 ) is the dropout rate. The output layer consists of a single neuron for regression, providing the 

predicted test score. 

The Convolutional Neural Network (CNN) model consists of one-dimensional convolutional layers 

designed to detect local patterns within the input features. The convolutional operation applies a set of filters 

to the input, generating feature maps. Mathematically, this operation is defined as (𝑊 ∗ 𝑋)(𝑡) =
∑ 𝑊(τ)𝑋(𝑡 + τ)𝑘

τ=1  where ( 𝑊 ) is the filter (kernel) of size ( 𝑘 ) and ( 𝑋 ) is the input sequence. The output 

of the convolutional layers is passed through the ReLU activation function, followed by a flattening layer that 

converts the 3D output into a 1D vector. A fully connected layer with 128 neurons further processes this vector, 

and a dropout layer is applied to prevent overfitting. The final layer produces the predicted score for each 

student. 

The Bidirectional LSTM model captures temporal dependencies in both directions within the input 

sequence. Standard LSTM networks process sequences in a single direction; however, Bidirectional LSTMs 

process the input sequence forward and backward, capturing relationships from both ends. The cell state (𝑐𝑡) 

and hidden state (ℎ𝑡) in an LSTM cell are computed using the input (𝑥𝑡) at time ( 𝑡 ) and the previous states 

ℎ𝑡 = LSTM(𝑥𝑡 , ℎ𝑡−1, 𝑐𝑡−1). The bidirectional wrapper aggregates these computations to form a richer 

representation of the sequence data, which is then passed to a dense layer for final prediction. The LSTM with 

Attention mechanism enhances the model's ability to focus on relevant parts of the input sequence. The 

attention mechanism assigns a weight (α𝑡) to each time step in the LSTM output, indicating its importance in 

the final decision-making process. The attention scores are calculated using a learned vector ( 𝑢 ) and the 

hidden states (ℎ𝑡) is α𝑡 = softmax(𝑢𝑇 ⋅ ℎ𝑡). In addition, the context vector ( 𝑐 ), representing the relevant 

information, is computed as a weighted sum of the hidden states as presented as 𝑐 = ∑ α𝑡ℎ𝑡𝑡 . This context 

vector is then used as input to the final dense layer, allowing the model to make predictions based on the most 

influential parts of the sequence. 
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2.4. Cross-Validation 

To ensure that the models are rigorously evaluated, 10-fold cross-validation was employed. This method 

divides the dataset into 10 equally sized subsets, or folds. In each iteration, one-fold is held out as the test set, 

and the remaining nine folds are used for training. This process is repeated 10 times, with each fold serving as 

the test set once. Let the dataset ( 𝑋 ) be partitioned into ( 𝑘 ) subsets, (𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑘}), where ( 𝑘 =
 10 ). 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑖) {Train set = ⋃ 𝑋𝑗  ; Test set𝑗≠𝑖 = 𝑋𝑖}. This approach provides a more reliable 

estimate of the model's performance by reducing variance caused by the specific train-test split and ensuring 

that every data point is used for both training and testing. To ensure optimal performance, each model 

underwent an extensive hyperparameter tuning process. For the CNN model, the kernel size, number of filters, 

and learning rate were tuned using a grid search approach. The LSTM model parameters, including the number 

of units in each layer and dropout rate, were fine-tuned to prevent overfitting. Specifically, a Bayesian 

optimization technique was employed to determine the optimal hyperparameter configurations. This approach 

provided a systematic way to balance model complexity with training efficiency, ensuring the reproducibility 

of results across different datasets and experimental settings 

 

2.5. Evaluation Metrics 

The performance of each model was evaluated using several metrics, capturing different aspects of the 

prediction quality. The Mean Absolute Error (MAE) measures the average magnitude of prediction errors and 

is defined as MAE =
1

𝑁
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑁
𝑖=1  where (𝑦𝑖) is the actual score, (𝑦𝑖̂) is the predicted score, and \( N \) is the 

total number of instances. Furthermore, the Root Mean Squared Error (RMSE) penalizes larger errors more 

severely and is given by RMSE = √
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1 , This metric emphasizes larger deviations, making it 

sensitive to outliers in the data. The R-Squared (R²) value, representing the proportion of variance in the 

dependent variable that is predictable from the independent variables, is calculated as 𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖̂)2𝑁

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑁
𝑖=1

 

where (𝑦̅) is the mean of the observed values. The Mean Squared Logarithmic Error (MSLE) assesses the ratio 

between predicted and true values, useful when predictions can vary by orders of magnitude as presented in 

MSLE =
1

𝑁
∑ (log(1 + 𝑦𝑖) − log(1 + 𝑦𝑖̂))2𝑁

𝑖=1 . Finally, the Mean Absolute Percentage Error (MAPE) provides 

a percentage-based measure of error as presented as MAPE =
100\%

𝑁
∑ |

𝑦𝑖−𝑦𝑖̂

𝑦𝑖
|𝑁

𝑖=1 . These metrics provide a 

comprehensive evaluation of model performance, capturing both the accuracy and the nature of the errors. The 

combination of cross-validation and multiple evaluation metrics ensures a thorough assessment of the deep 

learning models in predicting student performance. 
 

 

Figure 1. Research Methodology 
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3. RESULTS AND DISCUSSION  

In this section, we present the performance results of the four deep learning models—Deep Multilayer 

Perceptron (MLP), Deep Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory 

(BiLSTM), and Long Short-Term Memory with Attention (LSTM with Attention). The models were evaluated 

using five metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), R-squared (R²), Mean 

Squared Logarithmic Error (MSLE), and Mean Absolute Percentage Error (MAPE). The performance across 

these metrics provides insight into the models’ prediction accuracy and error distribution. 

 

3.1. Result 

As presented in the table 1, the Deep MLP model achieved an average MAE of 4.9704 with a standard 

deviation of 0.5546, indicating that the absolute difference between the predicted and actual scores is relatively 

low. The RMSE was 6.1817 ± 0.6641, slightly higher than the MAE due to the quadratic nature of RMSE, 

which penalizes larger errors more heavily. The R² value of 0.8286 ± 0.0365 shows that the Deep MLP model 

explains approximately 82.86% of the variance in the target variable, indicating a strong predictive ability. The 

MSLE value of 0.0213 ± 0.0324 shows that the logarithmic errors are minimal, which is expected when dealing 

with predictions that do not span several orders of magnitude. However, the MAPE value is unusually high, 

with an average of  1.11×1014, which suggests that the percentage error is highly inflated. This anomaly is 

likely due to the presence of very small true values in the test set, leading to extremely large percentage 

differences when the predicted value differs slightly. This issue highlights the limitations of MAPE when 

dealing with very small target values. 

The Deep CNN model outperformed the Deep MLP model in all metrics. The average MAE was 4.6900 

± 0.4084, and the RMSE was 5.8504 ± 0.4239, reflecting smaller errors overall. The R² value of 0.8472 ± 

0.0242 indicates that the model explains a higher proportion of the variance (around 84.72%) compared to the 

MLP model. This suggests that the convolutional layers in the CNN architecture are effective at capturing 

important patterns in the data. The MSLE value of 0.0168 ± 0.0217 indicates that the CNN model makes fewer 

logarithmic errors compared to the MLP. Like the MLP, the CNN also suffers from high MAPE values 

(6.15×1013), which are likely caused by the same issue of small true values resulting in disproportionately 

high percentage errors. Nevertheless, the lower MAE, RMSE, and higher R² values indicate that the Deep CNN 

is better suited for this task. 

The Bidirectional LSTM model’s performance was less favorable compared to the MLP and CNN. The 

average MAE of 6.3668 ± 1.2688 indicates that the model made larger errors in its predictions. The RMSE of 

7.8393 ± 1.3467 reinforces this finding, showing that the model penalizes larger errors more heavily, leading 

to a less accurate performance overall. The R² value of 0.7091 ± 0.1323 shows that the Bidirectional LSTM 

model explains approximately 70.91% of the variance, which is a significant drop compared to the MLP and 

CNN models. This suggests that while the BiLSTM model captures some temporal patterns, it does not 

generalize as well as the other models. Additionally, the MSLE value of 0.0240 ± 0.0136, although low, is 

slightly higher than that of the MLP and CNN models, further indicating that the BiLSTM model struggles 

with small prediction errors. Interestingly, the MAPE value of 3.85×1013, while still high, is lower than both 

the MLP and CNN models, suggesting that the BiLSTM model performs relatively better in minimizing 

percentage errors, even though its overall accuracy is lower. 

The LSTM with Attention model performed the worst across all metrics. The MAE of 13.9078 ± 0.8064 

indicates that this model made significantly larger errors in its predictions compared to the other models. 

Similarly, the RMSE of 17.2022 ± 0.9344 reflects that the model heavily penalizes large errors, resulting in 

poor overall performance. The R² value of -0.3097 ± 0.0972 shows that the model does not explain the variance 

in the data and may even predict worse than a simple mean prediction model. The MSLE of 0.0906 ± 0.0555, 

though relatively high, is still within an acceptable range given the large errors produced by the model. 

However, the MAPE value of 2.61×1014 further reinforces the model’s inadequacy in making accurate 

predictions. This poor performance suggests that the addition of an attention mechanism may have introduced 

complexity that the model was unable to handle effectively, resulting in significant overfitting and poor 

generalization to unseen data. 

 

Table 1. Comparison Results of Deep Learning Variants 

Model MAE RMSE R2 MLSE MAPE 

Deep MLP 4.9704 ± 0.5546 6.1817 ± 0.6641 0.8286 ± 0.0365 0.0213 ± 0.0324 1.11 × 10¹4 

Deep CNN 4.6900 ± 0.4084 5.8504 ± 0.4239 0.8472 ± 0.0242 0.0168 ± 0.0217 6.15 × 10¹³ 

Bidirectional 

LSTM 
6.3668 ± 1.2688 7.8393 ± 1.3467 0.7091 ± 0.1323 0.0240 ± 0.0136 3.85 × 10¹³ 

LSTM with 

Attention 
13.9078 ± 0.8064 17.2022 ± 0.9344 -0.3097 ± 0.0972 0.0906 ± 0.0555 2.61 × 10¹⁴ 
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3.2. Discussion 

The results indicate that the Deep CNN model outperformed the other models in predicting student 

performance, as evidenced by its superior MAE, RMSE, and R² scores. The convolutional layers likely allowed 

the model to effectively capture hierarchical patterns within the input features, leading to better generalization 

on unseen data. The Deep MLP model also performed well, albeit slightly worse than the CNN model, while 

the Bidirectional LSTM model demonstrated that temporal dependencies did not provide significant 

improvements for this task. The LSTM with Attention model’s poor performance suggests that the added 

complexity of an attention mechanism may not always be beneficial, particularly in datasets where temporal 

or sequential relationships are not as strong. Instead of improving performance, the attention mechanism may 

have introduced unnecessary noise into the learning process, leading to overfitting. It is also worth noting the 

abnormally high MAPE values across all models, particularly in the MLP and CNN models. This suggests that 

MAPE may not be a suitable metric for this task, as it tends to overinflate errors when the true values are small. 

Future work could explore alternative error metrics that are more robust to small target values, such as 

symmetric mean absolute percentage error (sMAPE). Although the models performed well, a more in-depth 

analysis of each model's limitations is necessary. For instance, the CNN model may overfit the data due to its 

complex architecture, whereas the LSTM with Attention model exhibited poor performance likely due to the 

added complexity that was not beneficial for this particular dataset. Additionally, the BiLSTM struggled to 

generalize due to a lack of temporal dependencies in the data. Moreover, biases inherent in the dataset, such as 

imbalanced demographic representation, could have influenced the model outcomes, leading to skewed 

predictions. 

   

4. CONCLUSION  

This study investigated the performance of four deep learning models—Deep Multilayer Perceptron 

(MLP), Deep Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory (BiLSTM), and 

Long Short-Term Memory with Attention (LSTM with Attention)—in predicting student test scores based on 

demographic and educational factors. The models were evaluated using multiple metrics, including MAE, 

RMSE, R², MSLE, and MAPE, to provide a comprehensive view of their predictive capabilities. The results 

indicate that the Deep CNN model consistently outperformed the other models, achieving the lowest MAE and 

RMSE and the highest R², suggesting that its convolutional architecture was effective in capturing relationships 

within the dataset. The Deep MLP also performed well, though slightly less accurate than the CNN model. The 

Bidirectional LSTM model, which aimed to capture temporal dependencies, did not show significant 

improvements and lagged behind the MLP and CNN in accuracy. Finally, the LSTM with Attention model, 

which was expected to improve performance through its attention mechanism, performed poorly, indicating 

potential overfitting and an inability to handle the complexity of the task. 

One notable observation across all models was the abnormally high MAPE values, which indicate that 

this metric may not be suitable for datasets where small true values exist. These high percentage errors suggest 

that alternative metrics such as sMAPE or RMSLE may be more appropriate for future studies dealing with 

similar datasets. In conclusion, this research underscores the importance of selecting the right model 

architecture for predictive tasks. Convolutional layers in deep learning models, as seen in the CNN, can capture 

complex patterns and yield better generalization. However, not all advanced models, such as LSTM with 

Attention, necessarily improve performance, especially when the task does not heavily depend on sequential 

or temporal relationships. Future research should consider expanding the dataset by including additional 

features, such as student behavior metrics or teacher evaluations, to provide a more comprehensive analysis. 

Exploring other advanced machine learning techniques, such as Transformer models or hybrid ensemble 

methods, could also improve the robustness of the findings. Furthermore, the integration of interpretability 

techniques, like SHAP values or LIME, would allow for a deeper understanding of model predictions, thus 

aiding in their practical application in personalized education. 
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