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Abstract 

 
Machine learning plays a crucial role in healthcare classification, with Rough Set Theory (RST) offering effective tools 

for managing data uncertainty. Within RST, the RSES2 tool supports algorithms like LEM2 and Covering, yet the 

influence of cover parameter values on rule generalization and specificity remains underexplored. This study investigates 

these effects using the Differentiated Thyroid Cancer dataset. The research investigates the trade-offs between rule 

generalization and specificity by adjusting cover parameter settings, which dictate the minimum and maximum cases a 

rule must cover. The comparison reveals that the LEM2 algorithm maintains high accuracy across various cover 

parameter values, with only a slight decline as the parameter increases, and shows improved coverage with higher cover 

values. In contrast, the Covering algorithm displays greater fluctuations in accuracy, peaking at lower cover parameter 

values and decreasing significantly as the parameter rises. Coverage for the Covering algorithm is highest at lower 

cover parameters but decreases sharply at higher values. This indicates that LEM2 is more robust in maintaining 

accuracy and coverage, while the Covering algorithm performs better at lower cover parameters but struggles with 

stability as the parameter increases. 
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1. INTRODUCTION  

Rough Set Theory (RST) has been widely used in data mining and knowledge discovery due to its 

capability to handle vagueness and uncertainty in data classification [1]. RST operates by approximating a set 

of data using two definable boundaries: the lower approximation, which contains all elements that definitely 

belong to the set, and the upper approximation, which includes all elements that possibly belong to the set. 

The difference between these two approximations is known as the boundary region, representing the 

uncertainty or vagueness in the classification process [2]. By utilizing these approximations, RST can 

generate decision rules that are both robust and interpretable, making it particularly effective in domains with 

incomplete or noisy data [3][4]. One of the key advantages of RST in classification tasks is its ability to work 

without requiring any preliminary or additional information about data, such as probability distributions or 

membership grades, which are often necessary in other methods like fuzzy sets or probabilistic models [5]. 

This makes RST particularly useful in situations where such information is difficult or impossible to obtain. 

Additionally, RST is capable of identifying and eliminating redundant or irrelevant attributes during the 

classification process, thereby reducing the dimensionality of the data and improving the efficiency and 

accuracy of the classifier [6]. This feature selection capability is crucial in handling high-dimensional 

datasets, as it helps in simplifying models without compromising on performance. Furthermore, the decision 

rules generated by RST are inherently interpretable, providing clear and concise explanations that can be 

easily understood by domain experts, thus enhancing the transparency and trustworthiness of the 

classification results [3]. 

Recent studies over the past years have continued to explore and extend the application of RST in 

various domains, and several research efforts have applied RST to diverse classification problems.  For 

instance, a novel rough set-based method was developed to improve feature selection and classification, 

demonstrating superior performance in handling high-dimensional data [7]. Another approach, known as 

GBNRS, was designed to offer fast and adaptive attribute reduction, particularly suitable for real-time and 

streaming data scenarios [8]. Additionally, the integration of Fisher Score with Multilabel Neighborhood 
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Rough Sets has been proposed to address the complexities inherent in multilabel classification, significantly 

improving classification accuracy [9]. Furthermore, the concept of multi-scale covering rough sets has been 

introduced, which enhances data classification by operating across multiple scales and handling hierarchical 

data structures effectively [10]. Lastly, incremental feature selection using fuzzy rough sets has shown 

promise in maintaining robust classification performance in dynamic and large-scale datasets [11]. These 

studies collectively demonstrate the ongoing relevance and applicability of RST in various data mining 

applications, particularly in handling complex, uncertain, and high-dimensional data. The integration of RST 

with other methods, such as fuzzy logic and genetic algorithms, further extends its utility in modern data-

driven environments. 

Within the RST framework, the Rough Set Exploration System (RSES) has emerged as a powerful 

software tool that facilitates the analysis and implementation of various rough set-based algorithms [12]. 

RSES2 supports a range of algorithms that can be used for rule generation, including LEM2, covering, 

genetic, and exhaustive algorithms. Each of these algorithms provides unique approaches to decision rule 

induction, allowing for flexible and tailored analyses depending on the nature of the data and the specific 

objectives of the study. The LEM2 algorithm is particularly well-regarded for its efficiency in handling data 

with missing attributes and its ability to produce concise and accurate decision rules. It constructs rules by 

iteratively finding minimal sets of conditions that distinguish between different decision classes [13]. On the 

other hand, covering algorithms offer flexibility by approximating rough sets through various neighborhood-

based approaches, which can result in different types of rules depending on how the coverage values are set 

[14]. Genetic algorithms in RSES2, known for their optimization capabilities, evolve rules by simulating 

natural selection processes, whereas exhaustive algorithms perform a comprehensive search to identify all 

possible rules, though often at the cost of higher computational complexity [15]. 

Sengupta and Sil [16] compared the classification accuracy of rules generated by genetic algorithms, 

covering algorithms, and LEM2 within the context of network traffic data. Their findings indicated that 

covering algorithms provided the highest total accuracy, suggesting a strong potential for this approach in 

certain types of data. A more recent study by Srimani and Koti [17] further corroborates these findings within 

the medical domain, where the LEM2 algorithm demonstrated the highest accuracy (76%) compared to 

exhaustive, genetic, and covering algorithms, despite having lower coverage values. This suggests that while 

covering algorithms excel in accuracy, the balance between coverage and rule generalization remains crucial, 

particularly in applications where the specificity of rules is as important as their generalization. Sulaiman et 

al. [18] investigated the application of Rough Set (RS) techniques, including Johnson's and Genetic 

algorithms, in generating classification rules from AIDS and e-learning datasets. Their results revealed that 

although both algorithms produced a similar number of rules, the accuracy varied significantly depending on 

the dataset and the method of cross-validation used. These findings emphasize the importance of considering 

both rule coverage and accuracy, as the relationship between these factors can significantly influence the 

overall performance of classification models. Sulaiman et al. highlighted that while higher accuracy might be 

achieved with certain algorithms, the generalization of rules—particularly in datasets with complex 

structures—remains a critical aspect that warrants further investigation. This underscores the need for a more 

nuanced understanding of how coverage values and rule generalization impact the efficacy of covering and 

LEM2 algorithms across different domains [19]. However, the specific influence of cover parameter values 

on the performance of covering and LEM2 algorithms, especially in terms of rule generalization and 

specificity using RSES2, has not been thoroughly investigated, indicating a need for further research in this 

area. Most studies have focused on the overall effectiveness of individual algorithms without delving into 

how varying cover parameter values might alter the balance between rule accuracy and complexity. 

This research aims to address this gap by systematically comparing the impact of cover parameter 

values on the rule generation capabilities of both LEM2 and covering algorithms within the RSES2 

environment. The study seeks to provide deeper insights into the trade-offs between generalization and 

specificity in decision rules, offering valuable guidance for practitioners in selecting appropriate algorithms 

and parameters for various data mining tasks. Using the Differentiated Thyroid Cancer dataset from the UCI 

Machine Learning Repository, which includes 16 features related to patient demographics, clinical history, 

and pathological findings, the research will predict the recurrence of well-differentiated thyroid cancer. By 

applying both LEM2 and covering algorithms within the RSES2 environment, the study will systematically 

compare classification outputs by adjusting cover parameter settings, which determine the minimum and 

maximum number of cases a rule must cover. Specifically, the research will evaluate how variations in these 

settings impact prediction accuracy and the comprehensiveness of the generated rules (coverage value). 

Multiple experiments with different coverage thresholds will be conducted to observe the trade-offs between 

more generalized rules that cover a larger dataset portion and more specific rules that may offer higher 

accuracy but apply to fewer cases. The findings are expected to provide critical insights into optimizing rule 

generation parameters, aiding practitioners in balancing accuracy and coverage in classification tasks. 

 This research is limited to testing the cover parameter values of the LEM2 algorithm and the 

Covering algorithm, to see the relationship between the cover parameter values and the total coverage, on the 
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RSES2 software as an interface that supports Rough Set Theory-based classification. The implementation is 

limited to the use of the Thyroid data mentioned earlier. 

 

2. LITERATURE REVIEW 

This research was conducted after finding research gaps from the literature review process, especially 

about the implementation of RST in classification. As mentioned in the introduction, Sengupta and Sil [16] 

classified network traffic data to improve Intrusion Detection Systems (IDS) based on RST. The data used in 

the study was KDD network traffic data consisting of 11850 objects with 42 attributes. Of the total data, 

2,133 objects were used for training and 1,185 objects for classification testing. Before applying RST, the 

data obtained was first discretized using supervised learning techniques with the help of WEKA software. 

This discretization process is important because it can affect classification accuracy. This research applies 

three algorithms for rule generation in RSES2 namely: Genetic Algorithm, Covering Algorithm, and LEM2 

Algorithm. In addition, this research also finds reducts, which are the minimum subset of attributes that can 

replace the entire data without losing important information, by using extensive algorithms. Rules are then 

generated from these reducts. The results showed that the classification using the covering algorithm gave the 

best accuracy, with a total accuracy of 99.1%. The classifications generated from the reduct also showed 

similar accuracy. This research concludes that the application of RST in the classification of network traffic 

data can reduce complexity. 

Furthermore, research by Srimani and Koti [17] applied the Rough Set approach to analyze medical 

data with the aim of generating classification rules and improving decision making. Using the Pima data set, 

which consists of 768 data samples related to diabetes risk. Each sample has 8 attributes that are considered 

as major risk factors. This data was divided into a training set and a testing set. This study used Rough Set 

reduction techniques to select the most relevant subset of attributes for classification. Several induction 

algorithms were used including Exhaustive, Covering, LEM2, and Genetic Algorithms (GA). Exhaustive 

algorithm produces more reducts than Genetic Algorithm. In the experiment, the Exhaustive algorithm 

produced 32 reducts, while the Genetic Algorithm produced 10 reducts. Although the Exhaustive algorithm 

produced more reducts, the highest accuracy result was achieved by Genetic Algorithm with an accuracy of 

78.16%. In contrast, LEM2 had a high accuracy of 76%, albeit with lower coverage than the other 

algorithms. The importance of the results lies in the discovery that the results obtained from the GA 

implementation are non-deterministic, meaning that more accurate results can be obtained by calculating the 

average of multiple trials for the same dataset. This indicates that this approach still requires further 

exploration to be optimized. 

Further research was conducted by Sulaiman et al [18] who explored the application of Rough Set 

Theory (RST) in generating classification rules for datasets related to AIDS and e-learning. By utilizing web 

mining techniques, researchers attempt to extract hidden information from large and complex data. RST was 

chosen for its ability to handle uncertainty and inconsistent information, which is often encountered in the 

analysis of medical and e-learning data. A discretization process is applied to convert continuous data into 

categories, which allows for more efficient modeling and analysis. The results showed that for the AIDS 

dataset, the 5-fold cross validation method showed varied prediction accuracy, with the highest value 

reaching 81.08%. Meanwhile, 10-fold cross validation resulted in higher accuracy for the e-learning dataset, 

with the Genetic algorithm (GA) achieving an average accuracy of 97.86%, slightly higher than the Johnson 

algorithm which recorded 97.74%. Overall, GA and Johnson produced the same number of rules, but the 

accuracy results obtained from 10-fold cross validation were better than 5-fold for both datasets. In 

conclusion, this study successfully demonstrated that the use of RST, together with effective reduction and 

discretization techniques, can generate valid classification rules and improve accuracy in the analysis of 

complex and incomplete data. 

 

3. MATERIALS AND METHOD  

The investigation of trade-offs between rule generalization and specificity by adjusting cover 

parameter settings using LEM2 and Covering Algorithm is shown in Figure 1. The work was implemented in 

stages that start from preparing the data, generating rules from two algorithms, cover parameter setting, 

testing, and finally evaluation based on the metrics to find the best cover parameter value.  

 

2.1.     Dataset 

The dataset used in this research is sourced from secondary data available in the UCI machine 

learning repository, specifically focusing on Differentiated Thyroid Cancer Recurrence. The study involved 

383 patients who were diagnosed with various forms of thyroid cancer, including papillary, micropapillary, 

follicular, and Hürthle cell carcinoma, at a single medical center. These patients participated in a 

retrospective cohort study with a minimum follow-up period of 10 years, beginning from the time of their 

surgery and initial diagnosis. The research was conducted in strict adherence to local ethical guidelines and 

the principles outlined in the Declaration of Helsinki. Additionally, the study protocol was thoroughly 
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reviewed and approved by a dedicated board of experts at Hamedan University of Medical Sciences. The 

dataset includes comprehensive information on each patient's age at diagnosis, biological sex, smoking status 

(current and past), history of radiation therapy to the head and neck region, thyroid function, presence of 

adenopathy on physical examination, pathological subtype of cancer, focality, risk assessment according to 

ATA guidelines, TNM staging, initial treatment response, and recurrence status, which serves as the target 

variable for the study [20]. 

 

 

Figure 1. Research Method Flow 

 

2.2      Data Processing 

The dataset obtained from the UCI repository, initially provided in CSV format, was first processed 

for compatibility with the RSES2 software, which necessitates the use of the ARFF format. To achieve this 

conversion, Python was utilized to effectively transform the data from CSV to ARFF format. This 

preprocessing step was essential to ensure that the dataset could be efficiently analyzed and processed within 

the RSES2 environment, facilitating the subsequent stages of the research. 

 

2.3      Rules Generation Method 

This research is comparing two rules generation methods which will analyze the classification 

outcomes using rough set theory. The focus is on evaluating two rule generation approaches that depend on 

the set values of the cover parameter in RSES2, namely LEM2 and the Covering algorithm. Lower cover 

parameter value (e.g., 0.1) results in more granular and detailed rules. Conversely, a higher cover parameter 

value (e.g., 1.0) produces more general rules that are less detailed.  

In LEM2, the total coverage of the generated rules is always ensured, as rules are iteratively 

constructed until all objects in the decision class are covered. The total coverage of the rule set R for a 

decision class X is given by equation 1 and 2. 

 

𝐶𝐿𝐸𝑀2 =  
|⋃𝑟⊂𝑅𝐶𝑜𝑣𝑒𝑟𝑠(𝑟)|

|𝑋|
 (1) 

where: 

− R is the set of generated rules. 

− 𝐶𝑜𝑣𝑒𝑟𝑠(𝑟) represents the subset of objects covered by rule r, given by: 

 

𝐶𝑜𝑣𝑒𝑟𝑠 (𝑟) = 𝑋 ∩  ⋂ [𝑎 = 𝑣]

(𝑎,𝑣)⊂𝑟

 (2) 

− X is the set of all objects in the decision class. 
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Since LEM2 ensures that all objects are eventually covered by at least one rule, it follows that 

equation 3. 

 

𝐶𝐿𝐸𝑀2 = 1 (3) 

  

Indicating full coverage, regardless of the chosen cover parameter value. 

 

In contrast, the Covering Algorithm selects attribute-value pairs based on their fraction of coverage, 

stopping when a predefined threshold 𝛾 is met. The total coverage of the generated rules is given by equation 

4 and 5. 

 

𝐶𝐶𝑜𝑣𝑒𝑟𝑖𝑛𝑔 =  
|⋃𝑟⊂𝑅𝐶𝑜𝑣𝑒𝑟𝑠(𝑟)|

|𝑋|
 (4) 

 

Where: 

𝐶𝑜𝑣𝑒𝑟𝑠 (𝑟) = 𝑋 ∩  ⋂ [𝑎 = 𝑣]

(𝑎,𝑣)⊂𝑟

 (5) 

 

Unlike LEM2, the Covering Algorithm does not guarantee full coverage, as it depends on the selected cover 

parameter value 𝛾. The individual coverage of an attribute-value pair (a,v) within a decision class X is given 

by equation 6 and 7. 

 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝑎, 𝑣) =  
|𝑋 ∩ [𝑎 = 𝑣]|

|𝑋|
 (6) 

 

A condition (a,v) is selected if the equation 7: 

 
|𝑋 ∩ [𝑎 = 𝑣]|

|𝑋|
≥ 𝛾 (7) 

 

Since the algorithm may stop before all objects are covered, the total coverage equation 8. 

 

𝐶𝐶𝑜𝑣𝑒𝑟𝑖𝑛𝑔 ≤ 1 (8) 

  

where a higher γ can lead to some objects being left uncovered. These differences highlight the fundamental 

trade-offs between the two rule generation methods, particularly in terms of coverage completeness and rule 

generalization. 

The research involves applying the Rough Set Theory framework to build decision rules using LEM2 

and covering algorithms, with cover parameter values tested at specific intervals: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8, 0.9, and 1.0. These variations in rule granularity and generalization will affect the classification 

outcomes, influencing metrics such as accuracy and coverage. 

 

2.4.     Testing and Evaluation 

The data is classified based on the generated decision rules using 10-fold cross-validation within the 

RSES2 environment. The outcomes of each test are evaluated and compared in terms of total accuracy, total 

coverage, and total test number across the different coverage settings for both LEM2 and covering 

algorithms. This comparative analysis aims to identify the optimal coverage settings for rule generation and 

assess the performance differences between the two algorithms. The outcomes of each test are evaluated 

using the default evaluation metrics provided by RSES2, specifically total accuracy, total coverage, and total 

test number across the different cover parameter settings for both LEM2 and covering algorithms. Total 

accuracy refers to the percentage of correctly classified instances out of the total number of instances in the 

dataset. Meanwhile, total coverage represents the proportion of instances that are covered by the generated 

decision rules. In rough set theory, due to its inherent approach to handling uncertainty and incomplete 

information, not all data may be classified. This explains why total coverage is a crucial metric—some 

instances may remain unclassified, and total coverage reflects the extent to which the rules can cover the 

dataset. 

 

3. RESULTS AND DISCUSSION 

Thyroid Cancer data which was originally in CSV file format, was converted into Atribute Relation 

File Format (ARFF) format which follows the RSES2 input system. Afterwards, according to the roughset 
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way of working, rules are built using LEM2 and Covering algorithms as previously designed. With the 

experimental treatment of the cover parameter value set as designed. The following are the classification 

results of each algorithm based on each treatment of the cover parameter set, with a focus on results 

comparing total accuracy and total coverage. 

 

3.1.      LEM2 Algorithm 

Table 1 presents the impact of varying cover parameters on the LEM2 algorithm's performance in 

terms of accuracy and coverage. The LEM2 algorithm consistently achieves high accuracy across a range of 

cover parameters, with values fluctuating slightly between 0.979 and 1.000. Notably, perfect accuracy 

(1.000) is observed when the cover parameter is set at 0.2, 0.3, and 0.4, indicating that at these settings, the 

algorithm is highly precise in classifying instances without any errors. As the cover parameter increases 

beyond 0.4, a slight decline in accuracy is observed, with the lowest accuracy (0.973) occurring at the 

maximum cover parameter value of 1.0. Despite this minor reduction, the algorithm still maintains a 

relatively high level of accuracy, demonstrating its robustness even with higher cover parameters. 

 

Table 1. Cover Parameter Variation Impact in LEM2 Algorithm 

Cover 

Parameter 

LEM2 Algorithm 

Total Accuracy Total Coverage 
Total Tested 

Object 

0.1 0.989 0.411 38 

0.2 1.000 0.408 38 

0.3 1.000 0.403 38 

0.4 1.000 0.418 38 

0.5 0.996 0.495 38 

0.6 0.987 0.579 38 

0.7 0.984 0.634 38 

0.8 0.979 0.726 38 

0.9 0.979 0.768 38 

1.0 0.973 0.824 38 

 

In contrast, the coverage of the LEM2 algorithm displays more variability as the cover parameter 

changes. At lower cover parameters, such as 0.1, 0.2, and 0.3, the coverage is relatively low, with the 

minimum value (0.403) occurring at a cover parameter of 0.3. However, as the cover parameter increases, the 

coverage improves steadily, peaking at 0.824 when the cover parameter is set to 1.0. This trend suggests that 

while lower cover parameters yield perfect accuracy, they do so at the expense of coverage, which remains 

limited. Conversely, higher cover parameters enhance the algorithm's ability to generalize across a broader 

set of instances, thereby increasing coverage, although with a slight trade-off in accuracy. Therefore, to 

achieve a balanced performance, particularly around 1.0 is recommended, as it optimizes the algorithm’s 

performance in both accuracy and coverage. 

The LEM2 algorithm is designed to identify minimal sets of conditions that can accurately classify 

instances while balancing the trade-off between generalization and specificity of rules generated. As the 

cover parameter increases, LEM2 is capable of generating rules that generalize better, meaning they apply to 

a larger number of instances without sacrificing accuracy. This occurs because LEM2 prioritizes creating the 

most general rule possible that still effectively distinguishes between different decision classes. The cover 

parameter in LEM2 influences the granularity of the rule sets; higher cover parameters allow the algorithm to 

create more generalized rules that cover a greater number of instances, leading to increased coverage. 

However, the accuracy remains high because LEM2's rule induction process inherently seeks to balance 

generalization with specificity, avoiding overfitting by not over-complicating the rules. 

Moreover, LEM2 is particularly effective in maintaining a minimal and efficient set of rules that 

ensures both high accuracy and adequate coverage across different cover parameter settings. The algorithm's 

flexibility in adjusting the rules according to the cover parameter allows it to maintain strong performance, 

preventing overfitting by focusing on the essential conditions needed to distinguish between classes. As the 

cover parameter increases, the algorithm broadens the scope of its rules, thereby improving coverage without 

a significant loss in accuracy. This demonstrates the LEM2 algorithm's capability to adapt to varying 

conditions while maintaining a balance between accuracy and coverage, making it a versatile tool for 

classification tasks. 

 

3.2.     Covering Algorithm 

The impact of varying cover parameters on the performance of the Covering algorithm in terms of 

accuracy and coverage is illustrated by Table 2. The algorithm’s accuracy fluctuates significantly across 

different cover parameter values, ranging from 0.868 to 0.937. The highest accuracy, 0.937, is observed at a 
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cover parameter of 0.2, indicating that at this specific setting, the algorithm is particularly precise in 

classifying instances. Accuracy remains relatively high, above 0.92, at cover parameters 0.1, 0.4, and 0.5, but 

begins to decline noticeably as the cover parameter increases beyond 0.5. The lowest accuracy, 0.868, occurs 

at cover parameters of 0.8 and 0.9, showing that the algorithm’s performance in terms of accuracy 

deteriorates at higher cover parameters. 

 

Table 2. Cover Parameter Variation Impact in Covering Algorithm 

Cover 

Parameter 

Covering Algorithm 

Total Accuracy Total Coverage 
Total Tested 

Object 

0.1 0.927 0.863 38 

0.2 0.937 0.863 38 

0.3 0.906 0.834 38 

0.4 0.932 0.845 38 

0.5 0.936 0.847 38 

0.6 0.877 0.637 38 

0.7 0.895 0.458 38 

0.8 0.868 0.471 38 

0.9 0.869 0.458 38 

1.0 0.891 0.466 38 

 

In terms of coverage, the Covering algorithm performs best at lower cover parameters. The maximum 

coverage of 0.863 is achieved at cover parameters of 0.1 and 0.2. However, as the cover parameter increases, 

coverage decreases progressively, with significant drops occurring beyond a cover parameter of 0.6. The 

lowest coverage, 0.466, is observed at the highest cover parameter of 1.0. This trend indicates that while 

lower cover parameters yield both high accuracy and maximum coverage, higher cover parameters lead to a 

reduction in both coverage and accuracy. Therefore, to achieve a balanced performance, maintaining a lower 

cover parameter, particularly around 0.2, is recommended, as it optimizes the algorithm’s performance in 

both accuracy and coverage. 

The mechanics of the Covering algorithm contribute to these observed trends. The algorithm operates 

by generating rules that "cover" as many instances as possible based on the conditions set by the cover 

parameter. When the cover parameter is low, the algorithm tends to create more general rules that apply to a 

broader range of instances, which results in higher coverage. However, these general rules may not be as 

precise, potentially leading to a slight decrease in accuracy. Conversely, as the cover parameter increases, the 

algorithm generates rules that are more specific. These specific rules are designed to cover fewer instances 

but aim to be more accurate for those instances. This increase in specificity reduces coverage because fewer 

instances meet the stricter rule conditions. 

As the cover parameter increases, the algorithm demands that rules must cover more instances to be 

considered valid, leading to rules that are more restrictive and apply only to very specific cases. 

Consequently, coverage decreases because fewer instances are included under these more specific rules. The 

slight drop in accuracy at higher cover parameters may be attributed to the algorithm overfitting to certain 

data patterns, making it less effective at generalizing across the entire dataset. This overfitting is a result of 

the algorithm's focus on maximizing the coverage of each rule based on the parameter settings, which can 

lead to overly specific rules that perform well on the training data but fail to generalize to new, unseen data. 

In summary, the Covering algorithm’s performance is highly dependent on the cover parameter. 

Lower cover parameters result in more general rules that provide optimal coverage and relatively high 

accuracy, while higher cover parameters create more specific rules that reduce coverage and slightly decrease 

accuracy. The trade-off between rule coverage and specificity is evident, with higher specificity at higher 

cover parameters leading to a decline in overall coverage and the potential for overfitting, which ultimately 

affects the algorithm’s ability to generalize to new data. 

 

3.3.      Performance Comparison Between LEM2 and Covering Algorithm 

The comparison between the LEM2 and Covering algorithms, based on the impact of cover parameter 

variations on accuracy and coverage, reveals distinct performance characteristics for each algorithm. The 

LEM2 algorithm maintains consistently high accuracy across all cover parameter values, ranging from 0.979 

to 1.000, with perfect accuracy achieved at cover parameters of 0.2, 0.3, and 0.4. Even as the cover parameter 

increases to 1.0, the accuracy only slightly declines to 0.973, demonstrating the robustness of LEM2 in 

maintaining strong accuracy regardless of the cover parameter. In terms of coverage, the LEM2 algorithm 

shows a clear upward trend as the cover parameter increases, with coverage starting low at 0.403 for lower 

cover parameters and peaking at 0.824 when the cover parameter reaches 1.0. This indicates that LEM2 

benefits from higher cover parameters in terms of coverage, with only a slight trade-off in accuracy. 
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On the other hand, the Covering algorithm exhibits more fluctuation in accuracy, ranging from 0.868 

to 0.937, with the highest accuracy at a cover parameter of 0.2. As the cover parameter increases beyond 0.5, 

a noticeable decline in accuracy occurs, highlighting the Covering algorithm's sensitivity to changes in the 

cover parameter. In terms of coverage, the Covering algorithm performs best at lower cover parameters, 

particularly 0.1 and 0.2, where coverage is highest at 0.863. However, coverage progressively decreases as 

the cover parameter increases, with significant drops beyond 0.6, resulting in the lowest coverage of 0.466 at 

a cover parameter of 1.0. This decline shows that the Covering algorithm is more effective with lower cover 

parameters but struggles to maintain performance as the cover parameter increases. 

The cover parameter specifies the minimum number of instances that a rule must cover to be 

considered valid. Essentially, it controls the granularity or specificity of the rules generated by the algorithm. 

While total coverage refers to the proportion of instances in the dataset that are covered by the rules 

generated by the classifier. It measures how well the rules fit the data. Theoretically, when the cover 

parameter value is low, the rules generated will be more specific and may cover fewer objects from the 

dataset. The total coverage is low because only a small percentage of objects are included in the rule. 

Whereas when the cover parameter value is high, the generated rules will be more general and cover more 

objects from the dataset. Total coverage tends to increase as more objects are described by the rule. Based on 

this theory, the LEM2 results show a match between the relationship between the cover parameter value and 

the total coverage generated. In contrast, the covering algorithm shows the opposite result, which has a lower 

total coverage value when the cover parameter value is higher. This happens because there is 

overgeneralization in the rules generated when the cover parameter value gets higher in the covering 

algorithm. The more generalized rules become too general that they are not effective enough in capturing 

specific patterns in the data, so the model cannot classify the data well and is eventually chosen not to be 

classified because it is considered ambiguous [21][22].  

  

4. CONCLUSION  

This study highlights the crucial role of cover parameter values in shaping the performance of LEM2 

and Covering algorithms within the Rough Set Theory (RST) framework. By systematically adjusting the 

cover parameter, the research uncovers the distinct trade-offs between rule generalization and specificity for 

both algorithms. The LEM2 algorithm demonstrates strong robustness, maintaining high accuracy across 

different cover parameter settings with only minimal decline at higher values, making it a reliable choice for 

applications requiring consistent classification performance. Conversely, the Covering algorithm exhibits 

greater sensitivity to parameter variations, with accuracy and coverage decreasing at higher values, 

potentially leading to overfitting. Lower cover parameters favor broader rule coverage with relatively high 

accuracy, whereas higher values yield more specific rules at the cost of reduced coverage. The implications 

of this research extend beyond theoretical analysis, offering practical guidance for optimizing classification 

models in real-world applications. In healthcare diagnostics, where rule-based models assist in medical 

decision-making, understanding the impact of cover parameters can help fine-tune classification systems for 

more interpretable and reliable predictions. Furthermore, this study provides a foundation for improving the 

adaptability of rough set-based classifiers, enabling better parameter selection based on dataset 

characteristics. The findings can also inform future research in machine learning, particularly in developing 

automated methods for optimizing rule-based classification models across various domains, including 

finance, cybersecurity, and bioinformatics. 

Future research could explore strategies to optimize the selection of cover parameters, potentially 

using heuristic or machine learning-based approaches to dynamically adjust the values based on dataset 

characteristics. Additionally, applying this methodology to different domains, such as finance, cybersecurity, 

or other medical datasets, could help assess the generalizability of the findings. Another potential direction is 

investigating hybrid models that integrate Rough Set Theory with other classification techniques to improve 

accuracy and robustness. Furthermore, addressing challenges related to imbalanced datasets and enhancing 

the interpretability of generated rules could increase the practical applicability of Rough Set-based 

classification. Finally, real-world validation through collaboration with domain experts, particularly in 

clinical decision-making, would further strengthen the relevance of the findings for practical implementation. 
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