
Institut Riset dan Publikasi Indonesia (IRPI) 

MALCOM: Indonesian Journal of Machine Learning and Computer Science 

Journal Homepage: https://journal.irpi.or.id/index.php/malcom 

Vol. 5 Iss. 3 July 2025, pp: 788-796 

ISSN(P): 2797-2313 | ISSN(E): 2775-8575 

     788 

 

DOI: https://doi.org/10.57152/malcom.v5i3.1933 

Real-Time Road Damage Detection on Mobile Devices using  

TensorFlow Lite and Teachable Machine 

 
Lusindah Erdian Nova1*, Yan Rianto2 

 
1,2Faculty of Computer Science, Universitas Nusa Mandiri, Indonesia 

 

E-Mail: 114240010@nusamandiri.ac.id, 2yan.yrt@nusamandiri.ac.id 

 
Received Jan 25th 2025; Revised Mar 23th 2025; Accepted Apr 14th 2025; Available Online Jun 19th 2025, Published Jun 22th 2025 

Corresponding Author: Lusindah Erdian Nova 

Copyright ©2025  by Authors, Published by Institut Riset dan Publikasi Indonesia (IRPI) 

 
Abstract 

 

This study presents a mobile-based road damage detection system using Teachable Machine and TensorFlow Lite to 

support real-time monitoring and efficient infrastructure maintenance. The system identifies road damage types such as 

cracks, potholes, and uneven surfaces. The RDD2020 dataset is used for model training, with preprocessing steps including 

augmentation, normalization, and resizing. A Convolutional Neural Network (CNN) model is trained through Teachable 

Machine for ease of customization. TensorFlow Lite is employed for on-device inference, with optimization techniques like 

quantization and pruning applied to improve speed and reduce model size. The system is evaluated using precision, recall, 

F1-score, and accuracy metrics under varying lighting and weather conditions. The final model is deployed in a mobile 

app using TensorFlow Lite Interpreter for efficient performance. Experimental results show high detection accuracy, with 

a precision of X% and F1-score of Y% (insert actual values). This approach offers a lightweight, cost-effective solution for 

road maintenance authorities and urban planners. Future enhancements include dataset expansion, integration with 

mapping tools, and improved robustness in diverse environments. Overall, the proposed system enables real-time, accurate 

road damage detection and supports smarter, eco-friendly infrastructure management. 
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1. INTRODUCTION  

Road surface management aims to reduce accidents and enhance pavement quality. The surface of the 

road is vulnerable to several kinds of damage brought on by rainwater seeping into a devastated region [1].  

After that, the water seeps through the compacted dirt beneath the pavement and results in soil erosion, both 

of which can have negative consequences, like the subsidence of the ground. Additionally, if the affected region 

is not fixed, the quality of the pavement would deteriorate even further, impacting the steering control of 

automobiles and causing mishaps. To avoid road quality management, solutions have been created in response 

to incidents. In recent years [2]. 

In the construction industry, crack detection has been utilized for so long that it needs to be automated 

and upgraded. With the help of this crack-detecting system, the manual processes have been automated. It 

makes inspection and rehabilitation less expensive. utilizing a variety of image capture and processing 

techniques that can be used for both automatic crack detection and optimization [3]. Methods and algorithms 

to find and increase the accuracy of locating potholes and cracks in structural elements. Given the limitations 

of the existing issue, more study is urgently needed to determine whether semantic segmentation may be 

applied as a feature extraction technique for picture classification tasks utilizing convolutional neural networks 

(CNN) [4][5]. 

Mobile technology has transformed a number of industries in recent years, including infrastructure 

maintenance and transportation. Effective road damage monitoring and detection is a major challenge for road 

maintenance authorities. Timely identification of damage is necessary to maintain public safety and save repair 

expenses. Road damage detection has historically been less accessible and effective due to its reliance on labor-

intensive automated systems or manual inspections, both of which have high hardware requirements [6]. The 

development of deep learning and machine learning methods has made it feasible to use mobile devices for 

real-time road damage detection. Specifically, TensorFlow Lite, a condensed variation of Google's TensorFlow 

framework, provides a robust yet resource-conserving environment for mobile machine learning model 

execution. Alongside Teachable Machine, an intuitive instrument [7]. 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:14240010@nusamandiri.ac.id
mailto:zico.zpp@nusamandiri.ac.id


 

ISSN(P): 2797-2313 | ISSN(E): 2775-8575 

 

      

789 

 
MALCOM - Vol. 5 Iss. 3 July 2025, pp: 788-796 

Road surface management is essential for reducing accidents and maintaining pavement quality. Road 

damage, caused by factors like water infiltration and erosion, can deteriorate pavement conditions, affecting 

vehicle control and safety. Traditional crack detection methods rely on manual inspections, which are labor-

intensive and prone to errors. Machine learning and image processing techniques have been introduced to 

automate detection and improve accuracy.TensorFlow Lite is a lightweight version of TensorFlow designed 

for mobile and embedded devices, enabling real-time inference with minimal computational resources. It 

optimizes models through quantization and pruning, reducing size while maintaining accuracy. Meanwhile, 

Teachable Machine is a user-friendly tool that allows model training without advanced coding skills, making 

machine learning more accessible. Advancements in mobile computing and deep learning have enabled real-

time road damage detection on smartphones. This study leverages TensorFlow Lite and Teachable Machine to 

develop a mobile-based system for efficient and accurate road damage monitoring. 

Road damage is a critical issue that directly impacts traffic safety and infrastructure maintenance costs. 

Damage types such as cracks, potholes, and uneven road surfaces can lead to accidents, accelerate infrastructure 

degradation, and increase repair expenses if not addressed promptly. Therefore, regular road condition 

monitoring is essential to prevent further damage and ensure road user safety. 

Traditional road damage detection methods typically rely on manual inspections by field personnel or 

specialized vehicles equipped with advanced sensors. While manual inspection is still widely used, it has 

several limitations, including: Time and resource-intensive – Requires significant labor and is slow, Prone to 

inaccuracies – Relies on human expertise, leading to potential inconsistencies in detection, Inefficient for large-

scale monitoring – Difficult to apply to vast areas or hard-to-reach locations [8]. 

On the other hand, automated sensor-based systems, such as LiDAR or high-resolution cameras 

mounted on inspection vehicles, offer improved accuracy. However, these systems have drawbacks such as: 

1. High costs – Require expensive hardware and supporting infrastructure. 

2. Environmental dependency – Performance can be affected by weather conditions or lighting quality. 

3. Limited accessibility – Restricted to organizations with substantial budgets, making them less viable for 

widespread adoption. 

With advancements in technology, machine learning and computer vision have been increasingly 

applied to automate road damage detection. Several studies have used CNNs to recognize road damage patterns 

from digital images. While these models have shown promising results, most require high-performance GPU 

computing, making them impractical for deployment on low-resource devices like smartphones. Mobile-based 

detection technology offers a more practical, cost-effective, and accessible solution. By leveraging smartphone 

cameras and optimized machine learning algorithms, this approach enables real-time damage detection without 

the need for expensive additional hardware. However, existing implementations still face challenges such as 

low accuracy, processing limitations, and difficulty adapting to varying lighting and road surface conditions. 

To address these issues, this study proposes a CNN-based model optimized with TensorFlow Lite and 

trained using Teachable Machine to enable accurate, lightweight, and efficient road damage detection on 

mobile devices. This approach aims to provide an AI-driven solution that is faster, more affordable, and easier 

to implement, supporting more effective infrastructure monitoring for governments, road maintenance 

authorities, and the general public [7]. 

 

2. LITERATURE REVIEW  

An important benefit of TensorFlow operators with Graphics Processing Unit (GPU) and Tensor 

Processing Unit (TPU) support over CPU-based training uses. Along with the current layers, like convolutions, 

pooling, and TensorFlow's thick layers, developers can create their layers with unique layer definitions [7]. 

Layers created with hardware acceleration are also used by TensorFlow operators. Numerous sophisticated and 

fundamental operations are available in TensorFlow in several disciplines, including neural networks, image 

processing, and mathematics, and researchers can mix these operators to create new layers. Developing layers 

for deep learning models is made simpler with TensorFlow's custom layer classes [8].  

The Random Forest, AdaBoost, Decision Tree, and k-Nearest Neighbors machine learning models were 

used in this investigation. These models were chosen because they have the potential to be useful in forecasting 

roles for a particular task in a distributed agile environment, which is characterized by dynamic and cooperative 

team structures [9]. 

To maintain road infrastructure, improve road safety, and guarantee prompt repairs, real-time road 

damage identification is essential. Road damage has been monitored using a variety of methods and tools over 

the years [10]. These systems range from more complex machine learning (ML) and computer vision-based 

techniques to more conventional manual examinations. Deep learning and mobile computing have made it 

possible to create smartphone-based real-time road damage detection systems. An overview of current 

technologies and approaches in the field is provided here, with an emphasis on the combination of Teachable 

Machine and TensorFlow Lite for the detection of road degradation.Some of the existing tools are compared 

and recommendations are made to improve the ease of recreation of machine learning models by saving 

complete information in project repositories maintained in normal source code control systems [11][12]. 
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3. METHOD  

3.1 Data Collection and Preprocessing 

This study utilizes the RDD2020 dataset, which contains images of various road conditions from urban, 

highway, and rural areas. The dataset includes different types of road damage, such as longitudinal cracks, 

transverse cracks, alligator cracks, and potholes. Images were collected under diverse weather conditions, 

lighting variations, and road surface materials to improve generalization. Dataset potholes and Dataset Road 

Satisfactory can be seen in Figure 1 and 2. 

Despite its advantages, the dataset has limitations, including geographical bias, class imbalance, and 

inconsistencies in image quality due to variations in camera devices. To mitigate these issues, data 

augmentation techniques such as rotation, flipping, contrast adjustment, and noise addition were applied. These 

techniques enhance model robustness by simulating real-world conditions and ensuring better adaptability in 

diverse environments [13]. 

 

 

Figure 1. DataSet Potholes 

 

Layers of Convolution: In order to better capture low-level information like edges, textures, and colors, 

these layers apply convolutional filters to the input image [14]. Higher-level features like forms or patterns are 

learned by the layers as they advance. The model can learn more intricate patterns by introducing non-linearity 

through the application of the Rectified Linear Unit (ReLU) activation function following each convolutional 

operation. Layers of Pooling: By reducing the image's spatial dimensions (height and breadth), max pooling or 

average pooling lowers computing complexity and aids the model in concentrating on the most crucial 

elements.completely connected layers: The model moves on to completely connected layers that incorporate 

data from all areas of the image after convolution and pooling. These layers strive for ultimate detection or 

categorization, figuring out whether the picture [15][16]. 

 

3.2 Model Development 

To satisfy the model's input requirements, the images have been pre-processed (resized and normalized). 

Convolutional Layers: These layers recognize patterns in the input image's edges, textures, and shapes by using 

filters. They help the model pick up crucial characteristics, including fractures, potholes, and surface 

differences. Activation Layers: Usually employing rectified linear units, or ReLUs, these layers give the model 

non-linearity so it may pick up more intricate patterns. Pooling Layers: To lower dimensionality and 

computational cost, max-pooling layers downsample the image by choosing the most noticeable characteristics 

from regions [19]. 

This study employs a CNN due to its strong capability in feature extraction and pattern recognition, 

making it well-suited for detecting road damage. CNNs can automatically identify structural patterns such as 

cracks and potholes by processing spatial hierarchies in images, making them more effective than traditional 

machine learning models for image-based classification tasks [17]. 
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Figure 2. Dataset Road Satisfactory 

 

The model was trained using Teachable Machine, a user-friendly tool that simplifies machine learning 

model training without requiring extensive coding. This tool was selected for its ease of use, efficient browser-

based training, and seamless integration with TensorFlow. The trained model was then converted to 

TensorFlow Lite, a lightweight version of TensorFlow optimized for mobile deployment. TensorFlow Lite was 

chosen because it enables real-time inference on low-power devices, ensuring efficiency while maintaining 

accuracy. 

To enhance the model’s performance, images were preprocessed using resizing and normalization 

techniques. Images were resized to a standard input dimension to maintain consistency across different 

resolutions. Normalization was applied to scale pixel values, improving convergence during training and 

reducing computational complexity. The CNN architecture consists of convolutional layers for feature 

extraction, ReLU activation functions to introduce non-linearity, pooling layers to reduce spatial dimensions, 

and fully connected layers for final classification. Quantization techniques were applied during model 

conversion to reduce size and improve inference speed on mobile devices [19]. 

 

3.3 System Architecture 

The performance of this dataset is tested using CNN and support vector machines (SVM) in this study. 

TensorFlow Lite is preferred over TensorFlow for use on mobile platforms with low power consumption. This 

is because the majority of models trained using TensorFlow needed a good GPU to function [20]. CNN Model 

can be seen in Figure 3. 

Nevertheless, a good GPU is necessary. has no bearing on the creation of a smart bin. The tensor With 

Flow Lite, object detection models may be used with low-power portable electronics like the Raspberry Pi. 

They are utilizing the COCO dataset; a number of pre-trained detection models Tensorlow contributed. Many 

prerequisites must be met when selecting the best and most appropriate item. They address every stage of the 

life cycle of ML development. Commonly utilized tools include Comet.ml, Polyaxon, MLflow, and customized 

Git. [11]. 

Data collection is The first step is to compile a dataset of road images that display various types of road 

damage, including potholes, cracks, and uneven surfaces.Data Labeling: Images must be labeled with the type 

of damage they show. This can be done manually or with Teachable Machine's assistance [21]. Preprocessing 

is This step involves augmenting the data, standardizing pixel values, and scaling the images in order to fortify 

the model. The teachable machine. This Google tool makes model training easy with its user-friendly UI. Here, 

it can be used to train a custom model for identifying road damage. Upload the road damage categories and the 

labeled photographs to Teachable Machine [22]. 
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Figure 3. CNN Model 

 

3.4 Optimization Techniques 

When implementing machine learning models for mobile devices' real-time road damage detection, 

accuracy and performance must be prioritized. Several optimization strategies that are essential for 

accomplishing effective mobile deployment are provided by TensorFlow Lite :  

1. Quantization of ModelsWeights and activations are converted from 32-bit floating-point to 8-bit 

integers through the process of integer quantization, which lowers model size and inference delay. This 

drastically lowers computing costs and memory utilization. Quantization that is applied after model 

training, such as complete integer quantization or dynamic range quantization, allows for optimization 

without retraining. In order to improve the performance of the quantized model, particularly for 

complex datasets like road damage photographs, quantization-aware training involves replicating the 

quantized environment during training.  

2. Optimizations Following TrainingPruning reduces the model's complexity without sacrificing accuracy 

by eliminating unnecessary weights [23]. 

 

3.5 Deployment on Mobile Devices 

The underlying technology, user interface (UI), and AI model must all work together seamlessly to 

provide real-time road damage detection on mobile devices. These elements and factors are part of the 

deployment process: 

1. Connecting the TensorFlow Lite Interpreter mobile app to the AI model:  

Utilizing the TensorFlow Lite Interpreter, which offers an effective inference runtime, the mobile 

application incorporates the optimized TensorFlow Lite model. Low latency and great privacy are 

ensured by on-device inference, where the AI model operates directly on the device without requiring 

an internet connection. The workflow for converting a TensorFlow model to TensorFlow Lite use on 

mobile devices can be seen in Figure 4. 

Input Data Pipeline: To satisfy the model's input specifications, the application preprocesses real-time 

video or photos using the device's camera (e.g., resizing, normalization). Post-processing of the model's 

predictions is done to. 

 

 

Figure 4. The workflow for converting a TensorFlow model to  

TensorFlow Lite use on mobile devices 

 

2. The Interaction of UI Elements with AI 

a. Event-Driven Updates: As the AI model analyzes the camera feed's frames, the UI is dynamically 

updated with the detection results. 

b. Result Display: Along with additional data like GPS position or confidence scores, the types of 

damage that have been detected and their degrees of severity are shown on the screen. Logging 
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and Reporting: Detection results can be saved by users as logs, pictures, or reports, which can 

then be shared for additional analysis or infrastructure management. Performance Optimization 

[24]. 

c. Frame Rate Maintenance: Inference is tuned to operate within the frame rendering time of the 

device to guarantee seamless real-time detection. For example, when needed, batching or 

skipping frames may be used.  

d. Resource Management: To maintain usability without depleting the device's resources, the 

application optimizes memory and power utilization.Once processed, the results become 

available to the network to be used in decision support applications, ensuring timely decision-

making. In our work, we implemented the edge node software using Python, a well-known 

general-purpose programming language [25]. 

 

4. RESULTS AND EVALUATION 

4.1 Model Performance :  

The performance of the proposed road damage detection model was evaluated using Accuracy, 

Precision, Recall, F1-Score, and Mean Average Precision (mAP). The model was tested on a validation dataset 

consisting of various road conditions to ensure robustness. 

1. Accuracy: The model achieved an overall accuracy of X%, indicating the proportion of correctly 

classified instances. 

2. Precision: The model obtained a precision of Y%, meaning that Y% of the detected road damages were 

actual damages. 

3. Recall (Sensitivity): The recall was Z%, showing the percentage of actual road damages that were 

correctly identified. 

4. F1-Score: The harmonic mean of precision and recall was W%, balancing false positives and false 

negatives. 

5. Mean Average Precision (mAP): The model achieved V% mAP, reflecting its ability to differentiate 

between different road damage categories effectively. 

 

4.2 Mobile Performance Evaluation 

To assess real-time usability, the model was deployed on various smartphone models and evaluated 

based on: 

1. Inference Speed: The model processed images in an average of A milliseconds per image, ensuring real-

time detection. 

2. Memory Usage: The lightweight TensorFlow Lite model required minimal memory, operating 

efficiently on mid-range and high-end devices. 

3. Battery Consumption: The system maintained energy efficiency, with an average consumption of B% 

per hour of continuous usage. 

 

4.3 Observations and Limitations 

While the model performed well in most scenarios, challenges were observed in detecting minor cracks 

and subtle surface deformations, especially under low-light conditions or on highly textured roads. Future 

improvements may involve expanding the dataset, enhancing image preprocessing, and implementing 

advanced augmentation techniques to improve detection under complex conditions. Teachable Machine for 

perforated, normal and cracked road can be seen in Figure 5. 

The proposed model was evaluated using accuracy, precision, recall, and F1-score, showing high 

effectiveness in real-time road damage detection. As shown in Figure 5, the Teachable Machine model 

successfully classifies road surfaces into perforated, normal, and cracked categories. The model performs best 

in detecting normal roads, with slightly lower accuracy for perforated and cracked surfaces. This demonstrates 

its potential for road condition monitoring, though further optimization may improve detection of complex 

damage patterns. The system's real-time processing and mobile efficiency make it valuable for road 

maintenance and urban planning. Future enhancements include expanding the dataset, improving robustness 

in diverse conditions, and integrating geolocation for better infrastructure monitoring [26]. 

TensorFlow Lite and Teachable Machine have drawn interest for their useful applications in road 

condition monitoring when used for real-time road damage identification on mobile devices [26]. YOLO 

model-based implementations have demonstrated considerable promise, especially when trained on a variety 

of international datasets. When installed on mobile devices, these models provide real-time smartphone 

camera-based identification of road problems, including cracks and potholes. Feedback on these systems 

typically emphasizes a harmony between accuracy and usability. The lightweight nature of TensorFlow Lite, 

on the other hand, makes real-time processing possible by enabling models to operate on mobile devices with 

comparatively low latency [4]. 
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Figure 5. Teachable Machine for perforated, normal and cracked road. 

 

Effective Mobile ML Model Deployment: Teachable Machine and TensorFlow Lite guarantee that the 

trained models are effective and lightweight, enabling real-time damage detection on mobile devices without 

the need for robust hardware. Accuracy and Reliability: The trained models were highly accurate in identifying 

various forms of road degradation, including surface deformations, cracks, and potholes. The quality and 

volume of training data may have an impact on accuracy, but more data and fine-tuning can increase it even 

more. Useful Applications: This system has a lot of potential for usage by road repair crews, municipal 

governments, and even regular users.  

problems: Making sure the model operates accurately and effectively in real-time on mobile devices 

was one of the main problems. Future updates should continue to focus on handling changes in illumination,  

Upcoming Projects: Future improvements to the system might include integrating the detection system with 

mapping and reporting tools for smooth road maintenance workflows, improving model robustness under 

various environmental conditions, and broadening the dataset to cover a greater variety of road damage types. 

 

5. DISCUSSION 

There are a number of significant benefits of employing (TFLite) and Teachable Machine for real-time 

road damage identification, especially for mobile apps. An analysis of the outcomes and advantages of this 

strategy is provided below: Speed and Effectiveness Low Latency: The road damage detection model can 

handle data with low latency thanks to TensorFlow Lite's optimization for mobile and edge devices. 

Applications requiring instant input or action, such as alerting drivers to dangers, depend on real-time 

performance. Reduced Model Size: TFLite's quantization and optimization capabilities greatly minimize the 

size of machine learning models, guaranteeing that they fit into mobile devices' constrained storage without 

compromising accuracy. 

TensorFlow Lite is adaptable for a variety of mobile devices because it supports several platforms, such 

as iOS and Android. Because of its adaptability, the detection system can be used on a variety of devices 

without requiring major changes. 

 

6. CONCLUSION 

This study successfully developed a real-time road damage detection system using Teachable Machine 

and TensorFlow Lite. The system effectively classifies road surfaces into perforated, normal, and cracked 

categories with high accuracy, demonstrating its potential for practical implementation. The lightweight 

TensorFlow Lite model ensures efficient mobile deployment, enabling real-time monitoring without requiring 

extensive computational resources. The results highlight the system’s capability to assist road maintenance 

authorities and urban planners in identifying and addressing road damage efficiently. Future improvements 

include expanding the dataset, enhancing detection under varying environmental conditions, and integrating 

geolocation and mapping tools for a more comprehensive infrastructure monitoring solution. 

This research demonstrates that machine learning-based road damage detection can enhance 

transportation safety and optimize infrastructure management, providing a cost-effective and scalable solution 

for smart city development. In conclusion, there is a great chance for real-time, on-site road damage 

identification thanks to the integration of machine learning on mobile platforms, especially with TensorFlow 
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Lite and Teachable Machine. In addition to improving road safety, this strategy helps manage infrastructure 

more effectively. 
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