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Abstract 

 

Internet of Things (IoT)-based air quality monitoring systems represent a significant advancement in urban 

environmental management. This research implements a system that integrates PM2.5, PM10, CO2, and NO2 sensors for 

real-time monitoring of pollutants. The results showed that the integration of IoT technology with cloud computing and 

machine learning algorithms successfully created a responsive and accurate monitoring system. The model achieved 

maximum accuracy during the training process, with promising predictive capabilities in real-world implementation. The 

main findings of the study confirmed that the Weighted Class (WC) approach significantly improved performance in the 

testing and prediction process by addressing class imbalance in the dataset, while the Data Augmentation (DA) 

technique did not show the expected improvement due to the intrinsic characteristics of air quality data. The automatic 

notification system successfully provides early warnings when air quality exceeds specified thresholds, enabling 

proactive responses from authorities and the public. The implementation of a web-based monitoring dashboard provides 

comprehensive visualization of data for long-term analysis. This research contributes to the development of smart cities 

by providing an effective framework for air quality management, supporting data-driven decision-making, and increasing 

public awareness of environmental conditions. 
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1. INTRODUCTION 

In cities, where air pollution significantly affects public health and living conditions, air quality is a 

critical issue that demands immediate attention. Hawari et al. [2] in their research on an Internet of Things 

(IoT)-based air quality monitoring system asserted that modern technology is needed to collect and analyze 

real-time data to address the complexity of air pollution. The system allows authorities to provide early 

warnings to the public about dangerous air conditions. 

Karnati [1] emphasized the urgency of the research by pointing out that the rapid growth of urban 

populations requires more effective and innovative air quality management systems. This research aims to 

develop technological solutions capable of overcoming the limitations of conventional systems through a 

comprehensive IoT approach, with a primary focus on real-time monitoring and predictive analysis 

capabilities. 

Martillano et al. [3] underscored the importance of communication in air quality monitoring systems, 

showing how the integration of notifications can improve public response to changes in air quality. The 

developed system does not simply track pollutants, but also provides valuable information that helps people 

make quick decisions regarding activities and health. 

Patil and Waghmare [4] further strengthened the argument by showing that modern IoT systems 

should be capable of continuous monitoring and sending automated alerts. This proactive approach is 

especially important in complex urban areas, where air quality can change rapidly due to various factors such 

as traffic, industrial activities, and weather conditions. As such, this research contributes to the development 

of technological solutions that can reduce health risks due to air pollution through smarter and more 

responsive monitoring. 

The implementation of automatic alert mechanisms is crucial for effective air quality management. 

Patil and Waghmare (2021) proposed a smart IoT-based air quality monitoring system that not only tracks 

pollution levels but also sends automatic alerts to users, thereby promoting proactive measures against air 

quality deterioration [4]. This proactive approach is essential in urban areas where air quality can change 

rapidly due to various factors, including traffic, industrial activities, and weather conditions. Furthermore, 
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Yadav and Verma (2020) highlighted the role of smart alerting systems in enhancing community 

responsiveness to air quality issues, emphasizing that timely notifications can lead to behavioral changes that 

reduce exposure to harmful pollutants [5]. 

Research on IoT based air quality monitoring systems has experienced significant developments in 

recent years. Jabbar et al. [5] introduced an IoT implementation system for remote air quality monitoring, 

which opens up new opportunities in environmental monitoring using cutting-edge technology. Their 

contribution provides an important foundation for the development of systems capable of collecting air 

quality data in a comprehensive and continuous manner. Furthermore, Alvear-Puertas et al. [9] expanded the 

scope of the research by designing a portable and cost-effective device for air quality monitoring in urban 

areas. Their approach shows the great potential of IoT technology in creating monitoring solutions that are 

not only accurate, but also easy to implement in various strategic locations. This is especially important given 

the growing complexity of air pollution problems in urban areas. Abimannan et al. [10] made an innovative 

contribution by integrating edge computing and distributed learning into the air quality monitoring system. 

They emphasized the importance of smart data analysis and distributed computing capabilities to gain deeper 

and more comprehensive insights into air quality conditions.  

The comprehensive integration of IoT sensors, cloud computing, and machine learning algorithms 

allows the system to go beyond mere data collection. Through this approach, the research was able to 

generate accurate predictions of changes in air quality, which is an innovative contribution to the field of 

urban environmental monitoring. The main focus of the research is to develop a more responsive automated 

notification system, capable of providing early warnings to the public and stakeholders. Thus, the 

contribution of this research is not only technological, but also has a direct impact on efforts to protect public 

health and manage a smarter and more sustainable urban environment. 

In conclusion, the development of IoT-based air quality monitoring systems represents a significant 

advancement in environmental management. By providing real-time data and automatic notifications, these 

systems empower individuals and communities to take informed actions to protect their health and well-

being. The ongoing research and development in this field continue to pave the way for smarter, more 

sustainable urban environments, as evidenced by the comprehensive frameworks and innovative solutions 

proposed in recent literature [9]-[12]. and when cities around the world start to have air problems, then air 

quality monitoring tools will be needed. 

 

2. MATERIALS AND METHOD 

This study takes an experimental approach to explore how IoT technology can improve air quality 

monitoring in cities. It looks at how collecting real-time data, using various sensors, and sending automatic 

alerts can help communities respond more effectively to air quality changes. The focus is on testing different 

parts of the system, like sensors that measure pollutants such as PM2.5, PM10, CO2, and NO2, 

communication modules that send data, and notification systems that alert users when pollution levels 

become unhealthy. Data will be gathered from these sensors placed around the city to track pollution at 

different times and locations. This information will then be analyzed in the cloud, with alerts sent 

automatically if pollution exceeds preset limits. The research involves using air quality sensors, cloud 

platforms for analysis, and mobile apps to notify users. 

 

2.1. Dataset 

This dataset offers valuable information on air quality by focusing on the detection of pulses 

commonly found in various urban locations. This data is collected from IoT sensors that continuously 

monitor pollutant levels in real-time. During a minimum 1-day experiment, this dataset can evaluate 

important air quality metrics, including PM2.5, PM10, CO2, and NO2. Each entry also includes an air quality  

index (AQI) classification based on PM2.5 readings and indicates whether alerts were triggered when certain 

thresholds were exceeded and not within reasonable limits. AQI categories and their corresponding PM2.5 

concentrations and global air quality frequency distribution (2019-2024) can be seen in Table 1 and Figure 1. 

 

Table 1. AQI Categories and Their Corresponding PM2.5 Concentrations [12] 

AQI Category 
PM2.5 Concentration 

(µg/m³) 
Air Quality Description 

Good PM2.5 ≤ 12 
Air quality is considered satisfactory, and air pollution poses little or 

no risk. 

Moderate 12.1 - 35.4 
Air quality is acceptable; however, some pollutants may be a concern 

for a few sensitive individuals. 

Unhealthy for 

Sensitive Groups 
35.5 - 55.4 

Members of sensitive groups (e.g., children, elderly, those with 

respiratory conditions) may experience health effects. 

Unhealthy 55.5 - 150.4 
Everyone may begin to experience health effects, and members of 

sensitive groups may experience more serious effects. 
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AQI Category 
PM2.5 Concentration 

(µg/m³) 
Air Quality Description 

Very Unhealthy 150.5 - 250.4 Health alert: everyone may experience more serious health effects. 

Hazardous PM2.5 > 250.5 
Health warning of emergency conditions: the entire population is 

more likely to be affected. 

Source: Adapted from [12] 

 

 

Figure 1. Global Air Quality Frequency Distribution (2019-2024) Source: [25] 

 

2.2. Proposed Method 

The experiment began with the deployment of air quality sensors at various locations to collect real-

time data on pollutants such as PM2.5, PM10, CO2, and NO2. The data acquisition module collects this data 

and sends it to the data processing unit for initial filtering and preprocessing. Once the data is processed, it is 

stored in the cloud storage system, making it accessible for further analysis and long-term storage. This 

system ensures continuous collection of air quality data over time, thus creating a comprehensive data set for 

monitoring air pollution levels in the area. 

Once the data is stored in the cloud, a data analysis engine takes over to analyze the collected data. It 

calculates the AQI and detects trends by applying machine learning algorithms that predict future air quality 

based on historical and current data. The system conducts regular air quality checks to compare pollutant 

levels with predetermined thresholds, determining whether the air quality is still within acceptable limits or is 

already dangerous. If the pollutant levels exceed these thresholds, the system will trigger an alert to notify 

relevant stakeholders and the public. 

The last stage of the system is the alert and notification process. When the pollutant level exceeds the 

safe threshold, the system updates the dashboard and sends notifications through various channels, including 

SMS, mobile app alerts, and email notifications. These alerts are displayed on a web dashboard, providing 

real-time air quality information to city officials, environmental agencies, and the public. The system ensures 

continuous monitoring and timely notifications, thus helping users take necessary precautions when air 

quality becomes hazardous. This methodology is presented as a comprehensive framework in the following 

flowchart in Figure 2. 

 

2.3. Real-time Air Quality Data Acquisition and Sensor Integration 

The integration of  IoT sensors in real-time air quality monitoring systems plays an important role in 

ensuring accurate and continuous data collection. IoT sensors such as gas sensors ( CO2, NO2, O3, PM2.5), 

temperature, and humidity sensors are deployed at strategic locations to capture environmental data. The raw 

data obtained from these sensors is then transmitted to a cloud platform for processing and storage. This 

enables real-time monitoring of air quality over a wide geographical area, providing invaluable insights into 

air pollution levels and its impact on public health [1][2]. 

The sensors used in these systems must have characteristics such as accuracy, response time, and 

optimal power consumption to ensure overall system performance. For example, MQ series gas sensors are 

often used to detect various gases such as carbon dioxide and nitrogen dioxide. These sensors convert 

chemical concentrations into measurable electrical signals [3]. Likewise, the PMS5003 particle sensor is 

widely used to detect the concentration of PM2.5 and PM10 particles in the air, which are important 

indicators of air quality in urban areas [4]. 

The sensors need to be integrated seamlessly with microcontroller units (MCUs) or single-board 

computers (SBCs), such as Raspberry Pi or Arduino, which facilitate the communication between the sensors 

and the cloud. This integration ensures that data is captured in real-time and transmitted using 
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communication protocols such as Wi-Fi, LoRa, or ZigBee. As seen in several implementations, MQTT 

(Message Queuing Telemetry Transport) is commonly employed for lightweight, real-time messaging in IoT 

systems, allowing efficient data transmission with minimal delay [31]. 

 

 

Figure 2. Real-Time Air Quality Monitoring and Alert System Workflow 

 

The quality of data acquisition is significantly influenced by the calibration of sensors to reduce drift 

and enhance measurement accuracy. In practice, the integration process involves multiple steps, including 

sensor calibration, data filtering, and pre-processing, before transmitting the data to the cloud. For example, 

the data may be processed through noise reduction algorithms to eliminate erroneous readings or irrelevant 

fluctuations that might arise from environmental factors such as wind or rain. This step ensures that the data 

sent to the cloud is both precise and reliable for further analysis. 

Once the data is pre-processed and cleaned, it is transmitted to a cloud platform for storage and further 

analysis. Cloud platforms like AWS, Microsoft Azure, or Google Cloud offer scalable solutions to store large 

amounts of environmental data. These platforms also allow the integration of machine learning models, 

which can process the data and predict future air quality levels. Time-series forecasting techniques, for 

example, can be used to predict air quality trends, helping anticipate pollution spikes and initiate necessary 

interventions [8][9]. 

The key advantage of this real-time data acquisition approach is the continuous monitoring of air 

quality in multiple locations, providing accurate and up-to-date information to stakeholders. Additionally, 

IoT-based air quality monitoring allows for flexible deployment in urban areas, where air quality can 

fluctuate dynamically over time [10]. Integration with mobile applications and web dashboards ensures 

stakeholders, including government agencies and the general public, stay informed about air quality 

conditions in real-time. 

Key components in this layer include: 

1. Sensor Calibration: Ensures that sensors provide accurate and reliable readings by calibrating sensors 

against known standards [11]. 

2. Real-time Data Transmission: Uses communication protocols such as MQTT or HTTP to transmit 

data to the cloud [12]. 

3. Data Pre-processing Methods: Filtering and cleaning data to remove noise or inconsistencies caused 

by environmental factors [13]. 
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4. Cloud Integration: Storing data on a scalable cloud platform and using machine learning models to 

analyze and predict air quality levels [14][15]. 

5. Power Management: Ensuring that sensor nodes are energy-efficient, especially when installed in 

remote areas that do not have direct electrical power sources [16]. 

 

Table 2. Parameters for Sensor Integration and Data Acquisition 

Parameter Setting 

Sensor Type MQ Series, PMS5003, DHT11 (Temperature and Humidity) 

Data Transmission Protocol MQTT, HTTP 

Communication Frequency 1 minute, 5 minutes 

Data Preprocessing Method Noise Filtering, Calibration 

Cloud Platform AWS, Azure, Google Cloud 

Battery Life 1-2 years 

Power Consumption Low (Sensor Power: 5-10mA) 

Sampling Rate 1 sample per minute 

Sensor Calibration Manual calibration against known gas concentrations 

Data Storage Cloud (Scalable solutions for large datasets) 

Communication Protocols Wi-Fi, LoRa, ZigBee 

Latency Low (Real-time transmission with minimal delay) 

Machine Learning Integration Time-Series Forecasting, Air Quality Prediction Models 

Environmental Adaptability Ability to handle fluctuations from wind, rain, etc. 

 

Parameters in the table 2 ensure that the system operates efficiently and effectively, with minimal 

human intervention. By integrating multiple sensor types and employing real-time data processing 

techniques, the IoT-based air quality monitoring system provides a robust and scalable solution to track and 

analyze environmental pollutants. 

 

2.4. IoT-Based Air Quality Monitoring System 

The IoT-Based Air Quality Monitoring System is designed to tackle the growing issue of air pollution 

in urban environments. The system utilizes a network of IoT sensors placed at strategic locations throughout 

the city to measure various pollutants such as PM2.5, PM10, CO2, and NO2. The data collected from these 

sensors is transmitted to a cloud platform for processing and analysis, enabling real-time monitoring of air 

quality conditions. 

 

1. Data Collection  

Each data point collected by the IoT sensors is represented by the notation (𝑥1,𝑦1), where i = 1, 2, 3,. . 

. ,n indicates the total number of data points collected. The available data is denoted as �⃗�𝑖 ϵ  𝑅𝑑 , 

where 𝑥𝑖 = { 𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3,. . . . , 𝑥𝑖𝑞  }represents the features for data point i, and the class label 𝑦1 ϵ {0, 

1},where 0 indicates unhealthy air quality and 1 indicateds acceptable air quality. 

 

  𝐷𝑎𝑡𝑎𝑐𝑙𝑜𝑢𝑑 = Ƒ (Sensor Data)         (1) 

 

This equation represents the data collected by the sensors being transmitted to the cloud for further 

processing. 

 

2. Data Processing AQI 

Once the data is received in the cloud, the next step is to calculate the AQI, which is based on the 

concentration of pollutants such as PM2.5, PM10, CO2, and NO2. This function computes the AQI 

based on the detected pollutant levels:  

Where g is the function that combines the pollutant values to produce the AQI, which reflects the air 

quality. 

 

    AQI – 𝑔(PM2,5,PM10,CO2,NO2)               (2) 

 

3. Alert Mechanism 

If the AQI exceeds a predefined threshold, an alert is triggered. This mechanism can be described by 

the following equation 3. 

 

   Alert = {
1  𝑖𝑓 𝐴𝑄𝐼 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  
0 𝑖𝑓 𝐴𝑄𝐼 ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

               (3) 
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Where the Threshold is the AQI value that has been set to determine whether the air quality is 

unhealthy and needs attention. 

 

To ensure the effectiveness of the IoT-based air quality monitoring system, several key components 

must be integrated. First, sensor calibration plays a crucial role in ensuring that the sensors provide accurate 

and reliable readings by calibrating them against known standards (22). Additionally, the system relies on 

real-time data transmission, using communication protocols such as MQTT or HTTP to transmit sensor data 

to the cloud (23). Once the data is collected, data pre-processing methods are employed to clean and filter the 

data, removing noise or inconsistencies caused by environmental factors (24). The processed data is then 

stored and analyzed on a cloud platform, which is scalable and supports the use of machine learning models 

to predict air quality levels. Furthermore, power management is essential to ensure that sensor nodes are 

energy-efficient, especially when deployed in remote locations without direct electrical power sources. With 

this architecture, the system can continuously monitor air quality across multiple locations, providing 

stakeholders such as government agencies and the general public with real-time updates through mobile 

applications and web dashboards. By integrating these components, the system can function effectively, 

providing timely and accurate data, while also enabling quick responses to changes in air quality conditions. 

 

2.5. Weighted Class (WC) 

The Weighted Class (WC) approach is a widely used technique to mitigate the issue of class 

imbalance, which is prevalent in many datasets, including those related to environmental monitoring, such as 

air quality assessment systems(2).This method involves assigning specific weights to each class, ensuring 

that the model accounts underrepresented classes. The weight for each class is determined by computing the 

median of the class frequency distribution and dividing it by the class frequency. The formula for the weight 

𝑤𝑐 of class c is given by equation 4. 

     

   𝑤𝑐 = 
∑ 𝑥𝑖−𝑐

𝑛
𝑖1

𝑚𝑒𝑑𝑖𝑎𝑛 (𝛴𝑖1
𝑛 𝑥𝑖−𝑐)

       (4) 

 

Where 𝑤𝑐 is the wight for class c , ∑ 𝑥𝑖

𝑛

𝑖1
 is the sum of samples in class c and the median is applied 

to the distribution of all class frequencies [4]. This weighted approach helps to balance the influence of each 

class during training, making the model more robust to imbalanced class distributions, thus improving 

prediction accuracy for underrepresented classes in the context of air quality monitoring systems(6) 

 

2.6. Confusion Matrix 

To assess the performance of the classification model, the Confusion Matrix is used. It provides 

detailed insight into the model’s ability to classify correctly and detect misclassifications. Accuracy is 

calculated using the formula 5. 

 

    Acc = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
        (5) 

 

In the context of classification performance evaluation, various metrics can be calculated using four 

fundamental counts from a confusion matrix. True Positive (TP) represents the number of positive instances 

correctly identified as positive by the model, while True Negative (TN) counts the negative instances 

correctly classified as negative. False Positive (FP), also known as Type I error, occurs when the model 

incorrectly predicts a negative instance as positive. Conversely, False Negative (FN), or Type II error, 

happens when the model fails to identify a positive instance and classifies it as negative. 

This matrix helps evaluate how well the model differentiates between actual and predicted labels, 

particularly in cases of imbalanced data, which is common in environmental monitoring applications (28). 

The confusion matrix for air quality prediction might look like the Table 3. 

 

Table 3. Confusion Matrix for Air Quality Prediction 

Label/Class PREDICTED (Output) 

ACTUAL (Target) Positive (P) 

Positive (P) True Positive (TP) 

Negative (N) False Positive (FP) 

 

Using the confusion matrix, we can understand model performance and identify potential areas for 

improvement, especially in terms of sensitivity and specificity for environmental data (25). By incorporating 

techniques like WC, DA, and using evaluation metrics such as the confusion matrix, this research improves 
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the accuracy and robustness of IoT-based air quality monitoring systems. These methods are fundamental in 

real-time applications, where sensor data can be noisy, imbalanced, and require constant adaptation to 

changing environmental conditions (8) 

 

3. RESULTS AND DISCUSSION 

This section consists of modeling, evaluation, comparison, and discussion. 

 

3.1. Modeling 
The modeling framework for the IoT-based air quality monitoring system is designed to effectively 

address the challenges of real-time air quality assessment in urban environments. This framework includes 

several critical components: data collection, data processing, alert mechanisms, and machine learning 

integration, all aimed at providing accurate and timely information to stakeholders for informed decision-

making. 

 

1. Data Collection 

The first step in the modeling process is the collection of air quality data from a network of IoT 

sensors that are strategically deployed throughout the city. These sensors measure various pollutants such as 

PM2.5, PM10, CO2, and NO2, as well as environmental parameters like temperature and humidity. The data 

collected is time-stamped and location-based, which helps in continuous, real-time monitoring of air quality 

across urban areas. The sensors used in this system include at table 4. 

 

Table 4. Data Collection for IoT sensors 

Pollutant Measurement Unit Description 

PM2.5 µg/m³ Particulate matter with a diameter of 2.5 micrometers or less. 

PM10 µg/m³ Particulate matter with a diameter of 10 micrometers or less. 

CO2 ppm Carbon dioxide concentration in parts per million. 

NO2 ppb Nitrogen dioxide concentration in parts per billion. 

Temperature °C Ambient temperature. 

Humidity % Relative humidity percentage. 

 

The data collected in Table 4 is represented as a dataset D, where each data point  consists of pollutant 

concentrations and environmental conditions at a specific time. This structured data allows for 

comprehensive monitoring of air quality across different locations and times, enabling accurate and up-to-

date analysis (Chen & Li, 2020) [28]. 

 

2. Data Processing AQI 

Once the data is collected, it undergoes processing to calculate the AQI. The AQI serves as a 

standardized measure of air quality, reflecting the potential health impacts of various pollutants. The AQI 

calculation combines the concentrations of pollutants into a single numerical value, which can then be 

categorized into different air quality levels (e.g., Good, Moderate, Unhealthy). The AQI calculation process 

can be expressed as a function 𝑔,where: 

   

AQI – 𝑔 (Concentrations of Pollutants)     (6) 

  
The function ggg uses established formulas and thresholds to convert pollutant concentrations into an 

AQI value. Once the AQI value is computed, it is categorized into one of the levels can be seen in the Table 

5. 

 

Table 5. AQI Categories and Corresponding Health Impacts 

AQI Category AQI Range Health Impacts 

Good 0 - 50 Air quality is considered satisfactory. 

Moderate 51 - 100 
Air quality is acceptable; some pollutants may affect 

sensitive individuals. 

Unhealthy for Sensitive 

Groups 
101 - 150 Members of sensitive groups may experience health effects. 

Unhealthy 151 - 200 Everyone may begin to experience health effects. 

Very Unhealthy 201 - 300 
Health alert: everyone may experience more serious health 

effects. 

Hazardous 301 - 500 Health warning of emergency conditions. 
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3. Machine Learning Integration 

To enhance the predictive capabilities of the air quality monitoring system, machine learning 

algorithms are integrated into the modeling framework. These algorithms analyze both historical and real-

time data to forecast future air quality levels. The machine learning models use historical pollutant data, 

environmental conditions, and AQI data to predict future AQI values, which can help in anticipating poor air 

quality conditions and taking proactive measures. 

By leveraging machine learning techniques, such as time-series forecasting and regression analysis, 

the system becomes more robust in predicting air quality trends and potential pollution spikes. This allows 

authorities and the public to take preventative actions ahead of time, especially during pollution events like 

industrial emissions, wildfires, or urban traffic congestion (Gupta & Sharma, 2020) [30]. 

 

4. System Architecture 

The overall architecture of the IoT-based air quality monitoring system is structured to facilitate 

seamless data flow and processing. The system is composed of several layers, each of which plays a critical 

role in ensuring the efficiency and reliability of the monitoring process. 

 

 

Figure 3. Wiring Air Quality Monitoring System 

 

The wiring mechanism of the IoT-based air quality monitoring system in Figure 3 facilitates smooth 

communication and data flow among its components. Sensors, including PM2.5, PM10, CO2, and NO2, 

collect air quality data and send it to the microcontroller unit (MCU) via MQTT and HTTP protocols. The 

cloud processes this data for cleaning, AQI calculation, and machine learning prediction, and stores the 

results in a database. An alert mechanism monitors the AQI, triggering notifications when thresholds are 

exceeded. Finally, user interfaces, including web dashboards and mobile apps, provide real-time access to air 

quality information, improving public health and safety in urban environments. 

 

3.2 Performance Evaluation and Comparison 

The IoT-based air quality monitoring system described in this program utilizes various sensors to 

measure key pollutants such as PM2.5, PM10, CO2, as well as environmental parameters such as temperature 

and humidity. The system calculates the AQI and publishes the data through an MQTT broker for remote 

access. Below is an evaluation of the system's performance, which includes key aspects such as sensor 

accuracy, system efficiency, data reliability, and communication performance. In addition, a comparison with 

similar existing systems is also provided to highlight strengths and areas for improvement. In Figure 4, it can 

be seen that air quality monitoring screen display. 

 

 

Figure 4. Air Quality Monitoring Screen Display 
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The DHT22 sensor, used for measuring temperature and humidity, provides reasonable accuracy with 

temperature readings accurate to ±0.5°C and humidity measurements accurate to ±2-5%. It operates within a 

broad temperature range of -40 to 80°C and a humidity range of 0-100%. While the DHT22 is generally 

reliable within these specified limits, its performance can degrade when exposed to extreme environmental 

fluctuations. For maintaining long-term reliability, calibration and proper placement are essential, particularly 

in environments with rapid temperature changes or high humidity levels. 

The PMS sensor, which measures particulate matter concentrations like PM2.5 and PM10, offers good 

accuracy with a resolution of 0.1 µg/m³ for PM2.5 and an operating range of 0-1000 µg/m³. Its performance, 

however, is heavily dependent on regular calibration. Over time, sensor drift may occur, potentially affecting 

the accuracy of the readings. The PM25_CALIBRATION_FACTOR and PM10_CALIBRATION_FACTOR 

are used to correct for this drift, but they require periodic verification to ensure optimal performance and 

reliable data. In Figure 5, it can be seen that PM2.5 and PM10 Accuracy Charts. 

The MH-Z19 CO2 sensor, measuring CO2 concentrations between 0 to 5000 ppm with an accuracy of 

±50 ppm or ±5% of the reading, is suitable for most indoor air quality monitoring applications. However, like 

the PMS sensor, the MH-Z19 may experience calibration drift over time. This drift necessitates periodic 

recalibration to ensure accurate CO2 readings over extended periods, particularly in environments where the 

sensor is in continuous use.  

 

 

Figure 5. PM2.5 and PM10 Accuracy Charts 

 

To enhance the reliability of sensor data, the system employs a moving average technique to smooth 

the raw readings, especially for PM2.5 and PM10. This helps to reduce the impact of transient fluctuations 

and noise, leading to more stable and reliable air quality assessments. Calibration factors, including those for 

temperature, humidity, PM2.5, and PM10, are applied to further improve the accuracy of the sensor readings. 

However, despite these measures, periodic manual calibration is still recommended to account for sensor 

aging and ensure the long-term accuracy of the system. In Figure 6, it can be seen that Air Quality 

Accumulation Chart.  

 

 

Figure 6. Air Quality Accumulation Chart 

 

The system uses sensor readings from PM2.5 and PM10 sensors to calculate the AQI, which is 

categorized into levels such as Good, Moderate, and Unhealthy. The AQI calculation is based on EPA 

standards, ensuring that the results conform to globally recognized air quality classifications. The use of well-
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defined thresholds for classification ensures that AQI values are meaningful and provide a reliable indicator 

of air quality. 

To further improve data accuracy, the system incorporates moving averages to smoothen sensor 

readings, preventing temporary spikes in particulate matter concentrations that could misrepresent AQI 

levels. This makes AQI calculations more stable and reliable over time. 

 

 

Figure 7. Currents Reading of IoT Based Air Quality Monitoring System 

 

In Figure 7, the IoT-based air quality monitoring system uses the ESP32 microcontroller, which is 

energy efficient, especially in low-power mode, thus enabling long-term use. Although power consumption 

increases during Wi-Fi and MQTT data transmission, the system collects sensor readings every 2 seconds 

and sends data to the MQTT broker every 30 seconds, thus optimizing power usage and real-time updates. 

The system's 2-second data sampling interval provides detailed air quality monitoring, while the 30-second 

publication interval balances efficient data transmission and network load. 

Communication relies on Wi-Fi, offering sufficient bandwidth in urban environments, with the MQTT 

protocol providing lightweight and efficient data transmission. Reconnection logic ensures automatic 

recovery from connectivity interruptions. However, Wi-Fi may not be ideal for remote areas with limited 

access, and alternative technologies are available.  

The system's LCD display provides real-time air quality updates, with clear AQI categorization, 

making it easy for users to monitor air quality on site. This feature, together with cost-effective sensors such 

as DHT22, PMS, and MH-Z19, makes the system suitable for urban air quality monitoring. While it excels in 

accuracy and efficiency, its reliance on Wi-Fi may limit its use in regions with unreliable connectivity. 

 

 

Figure 8. Bar Chart of Prediction and Reality Comparison 

 

In Figure 8 maximum accuracy performance in the model training process can often reach 100% for 

all trial options or methods used. However, the accuracy performance in the prediction process (using all 

data) generally shows better results compared to the testing or evaluation process. This indicates that the 

training data is able to provide optimal results for the model training process, so that the model can predict 

well on different data. 

 

4. CONCLUSION 

The integration of  IoT technologies in air quality monitoring systems represents a transformative 

advancement in urban environmental management. This research has successfully proven that the 

implementation of real-time data collection, automatic warning mechanisms, and machine learning 
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algorithms can significantly improve the effectiveness of air quality monitoring, in accordance with the main 

objectives of the research. The analysis results confirm that although optimal accuracy is achieved during the 

training process, the predictive capability of the model shows substantial potential, enabling relevant 

authorities and the public to respond quickly to air quality fluctuations. 

In the context of the second research objective, this study identified that the Weighted Class (WC) 

approach significantly contributed to the improvement of accuracy in the testing and prediction process, 

emphasizing the urgency of addressing class imbalance in environmental datasets. However, in contrast to 

the initial hypothesis, Data Augmentation (DA) techniques did not result in the projected accuracy 

improvement, possibly due to the intrinsic characteristics of air quality data. These findings provide an 

empirical foundation for algorithm selection in future implementations of similar environmental monitoring 

systems. 

The IoT-based air quality monitoring system developed through this research not only provides a 

comprehensive perspective on pollutant concentrations, but also empowers the public to take proactive steps 

in response to air quality alerts, fulfilling the third research objective of creating public-oriented applicative 

solutions. Further research should be directed at improving the system by integrating more diversified sensor 

technologies, expanding the geographical coverage of the monitoring network, as well as developing more 

sophisticated predictive algorithms capable of accommodating seasonal variability and climate change 

implications. In addition, exploration of methodologies for intensification of community engagement through 

optimized user interfaces and personalized notification systems will strengthen the practical implementation 

of these technologies. Longitudinal studies on the impact of the system on public health and policy 

formulation are also prospective directions for further research. 
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