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Abstract

Conventional methods for detecting papaya fruit ripeness are often subjective and inconsistent, negatively impacting
operational efficiency and standardizing product quality. This study aims to develop an objective automatic detection
system using the YOLOv11s Deep Learning algorithm based on digital images. The main contribution of this research
lies in the application of the YOLOv11s architecture to address the challenges of visual variability and complex color
gradations in papaya fruit. The research methodology involved training the model using a dataset of 3,172 images
stratified into three classes: Unripe, Semi-ripe, and Ripe, with a training, validation, and test data split of 70:20:10. The
evaluation results show that the model achieved optimal performance with a global Mean Average Precision (NAP@50)
value of 0.857. Specifically, the Raw class had the highest detection precision (AP 0.888), followed by the Ripe class (AP
0.875), while the Semi-ripe class achieved AP 0.808. Visual validation on test data confirmed the model's robustness in
localizing objects with high precision across various lighting conditions. This study concludes that the implementation of
YOLOv11s is effective as a reliable automatic sorting system solution to support Smart Farming.

Keywords: Deep Learning, Object Detection, Papaya Ripeness, Smart Farming, YOLOv11s.
Abstrak

Metode konvensional untuk deteksi tingkat kematangan buah pepaya seringkali bersifat subjektif dan tidak konsisten,
yang berdampak negatif pada efisiensi operasional serta standarisasi kualitas produk. Penelitian ini bertujuan
mengembangkan sistem deteksi otomatis yang objektif menggunakan algoritma Deep Learning YOLOv11s berbasis citra
digital. Kontribusi utama penelitian ini terletak pada penerapan arsitektur YOLOv1ls untuk menangani tantangan
variabilitas visual dan gradasi warna kompleks pada buah pepaya. Metodologi penelitian melibatkan pelatihan model
menggunakan 3.172 dataset citra yang terstratifikasi menjadi tiga kelas: Mentah, Mengkal, dan Matang, dengan
pembagian data latih, validasi, dan uji menggunakan rasio 70:20:10. Hasil evaluasi menunjukkan model mencapai
performa optimal dengan nilai Mean Average Precision (mMAP@50) global sebesar 0,857. Secara spesifik, kelas Mentah
memiliki presisi deteksi tertinggi (AP 0,888), diikuti kelas Matang (AP 0,875), sedangkan kelas Mengkal mencapai AP
0,808. Validasi visual pada data uji mengonfirmasi ketangguhan model dalam melokalisasi objek secara presisi pada
berbagai kondisi pencahayaan. Penelitian ini menyimpulkan bahwa implementasi YOLOv11s efektif sebagai solusi
sistem sortasi otomatis yang andal guna mendukung Smart Farming.

Kata Kunci: Deep Learning, Deteksi Objek, Kematangan Pepaya, Smart Farming, YOLOv11s.

1. PENDAHULUAN

Buah pepaya merupakan komoditas hortikultura strategis yang memiliki nilai ekonomi tinggi dan
permintaan pasar yang stabil [1], [2]. Namun, dalam rantai pasok industri, penentuan tingkat kematangan
buah menjadi parameter kritis yang menentukan standar kualitas akhir. Hingga saat ini, proses penyortiran di
lapangan masih didominasi oleh metode manual yang mengandalkan pengamatan visual manusia terhadap
perubahan fisik kulit buah [3]. Pendekatan ini memiliki kelemahan fundamental, yaitu bersifat subjektif,
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tidak konsisten, dan rentan terhadap human error, yang berdampak pada penurunan efisiensi operasional dan
kerugian nilai ekonomi produk[4], [5].

Penerapan teknologi computer vision telah menjadi solusi menjanjikan untuk mengatasi subjektivitas
tersebut [6]. Namun demikian, tantangan utama dalam deteksi kematangan pepaya terletak pada kompleksitas
gradasi warna kulit dan tekstur yang seringkali sulit dibedakan secara cepat oleh model konvensional.
Research gap yang diidentifikasi dalam penelitian ini adalah belum adanya eksplorasi mendalam mengenai
penerapan arsitektur terbaru YOLOv11s pada komoditas pepaya, di mana studi sebelumnya lebih banyak
berfokus pada varian lama atau metode CNN standar [7]. YOLOv11s menawarkan pembaruan pada blok
ekstraksi fitur yang dirancang untuk meningkatkan efisiensi parameter tanpa mengorbankan akurasi, sebuah
aspek yang belum dimanfaatkan optimal dalam studi-studi terdahulu [8].

Berdasarkan permasalahan tersebut, penelitian ini bertujuan untuk mengembangkan sistem deteksi
otomatis tingkat kematangan buah pepaya yang objektif dan akurat menggunakan algoritma Deep Learning
YOLOv11s. Penelitian ini diharapkan memberikan kontribusi teknis berupa model deteksi yang tangguh
terhadap variasi pencahayaan dan latar belakang kompleks, guna mendukung modernisasi sistem sortasi pada
Smart Farming.

2. TINJAUAN LITERATUR

Penelitian oleh Mahdiyyah et al. (2025) [9] menanggapi kebutuhan efisiensi penyortiran di industri
buah melalui pengembangan sistem klasifikasi kualitas lemon otomatis berbasis Convolutional Neural
Network (CNN). Metodologi penelitian melibatkan pengolahan 2.533 citra sekunder yang dipartisi menjadi
80% data latih dan 20% validasi, serta penerapan teknik augmentasi data untuk memperkaya variabilitas fitur
pembelajaran. Hasilnya menunjukkan performa model yang impresif pada fase pelatihan dengan akurasi
mendekati 100%, serta kemampuan prediksi yang baik pada pengujian 60 sampel independen. Meskipun
demikian, metrik performa menyoroti adanya fluktuasi akurasi validasi yang signifikan pada rentang 88-98%,
yang mengindikasikan potensi ketidakstabilan atau overfitting pada model. Selain itu, karakteristik dataset
yang didominasi oleh pengambilan gambar di atas permukaan beton seragam berpotensi membatasi
robustitas dan generalisasi sistem ketika dihadapkan pada kompleksitas visual latar belakang di lingkungan
operasional yang lebih heterogen.

Penelitian oleh Hawibowo dan Muhimmah (2024) [6] merespons tantangan subjektivitas dan
inefisiensi waktu pada penilaian visual manual kematangan buah pepaya melalui pengembangan sistem
deteksi otomatis berbasis Convolutional Neural Network (CNN) yang terintegrasi pada platform Android.
Metodologi penelitian memanfaatkan 315 citra primer yang diakuisisi langsung dari perkebunan, yang
kemudian melalui tahap pra-pemrosesan resizing menjadi 32x32 piksel dengan pembagian data 70% latih,
10% validasi, dan 20% uji. Hasilnya menunjukkan performa model yang signifikan, dengan akurasi
pengujian mencapai 96,97% dan keberhasilan klasifikasi 100% pada pengujian sampel acak. Namun,
evaluasi reduksi dimensi citra input yang ekstrem ke resolusi 32x32 piksel berpotensi menghilangkan fitur
tekstur halus yang krusial untuk deteksi. Selain itu, adanya celah antara akurasi pelatihan (98,63%) dan
validasi (90,00%) serta keterbatasan jumlah dataset mengindikasikan perlunya augmentasi data yang lebih
masif untuk memitigasi risiko overfitting dan menjamin generalisasi model yang lebih baik di lingkungan
nyata.

Penelitian oleh Sutrisna et al. (2024) [10] bertujuan mengatasi keterbatasan akurasi dan efisiensi pada
identifikasi manual kematangan buah pepaya melalui penerapan algoritma Convolutional Neural Network
(CNN). Metodologi penelitian memanfaatkan dataset sekunder "Papaya Classification" yang terdiri dari 300
citra, yang dipartisi dengan rasio 80:20 untuk data latih dan uji, serta menerapkan augmentasi data pada
arsitektur model dengan variasi 1 hingga 3 lapisan konvolusi. Hasil eksperimen menunjukkan bahwa model
dengan 3 lapisan konvolusi dan optimizer Nadam mencapai performa optimal dengan akurasi pengujian
sebesar 96,63%. Namun, kelemahan fundamental terkait kuantitas dataset yang sangat terbatas untuk standar
Deep Learning, yang memicu fenomena overfitting signifikan di mana akurasi validasi cenderung menurun
saat akurasi pelatihan meningkat. Kesenjangan ini mengindikasikan bahwa meskipun metrik akurasi tinggi,
model memiliki keterbatasan generalisasi yang serius, sehingga ekspansi volume dataset menjadi imperatif
untuk menjamin stabilitas prediksi pada implementasi nyata.

Penelitian oleh Saputra et al. (2022) [11] mengkaji permasalahan subjektivitas penentuan kematangan
buah melon yang berdampak krusial pada kualitas panen dan umur simpan melalui pendekatan analisis
tekstur citra digital. Metodologi penelitian mengkomparasi ekstraksi fitur Gray-Level Co-occurrence Matrix
(GLCM) pada variasi 4 dan 8 sudut orientasi yang diklasifikasikan menggunakan algoritma Support Vector
Machine (SVM) dengan empat fungsi kernel berbeda (Linear, RBF, Polynomial, Sigmoid) pada 650 dataset
citra. Hasil eksperimen menunjukkan bahwa kombinasi kernel Linear dengan 8 sudut orientasi GLCM
menghasilkan performa terbaik dengan akurasi 80%, presisi 81%, dan recall 80%. Namun capaian akurasi
80% masih tergolong moderat untuk standar sistem visi komputer modern, serta adanya disparitas performa
yang ekstrem antar fungsi kernel di mana kernel Sigmoid hanya mencapai akurasi 34% mengindikasikan
sensitivitas tinggi model terhadap pemilihan parameter. Selain itu, ketergantungan pada pra-pemrosesan
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cropping manual membatasi efisiensi dan kemampuan otomatisasi penuh sistem saat diimplementasikan pada
kondisi latar belakang perkebunan yang kompleks.

3. METODE

Metodologi penelitian ini dilaksanakan melalui serangkaian tahapan terstruktur yang bertujuan untuk
menyelesaikan permasalahan penelitian secara komprehensif. Diagram alir yang merepresentasikan langkah-
langkah strategis dalam studi ini dapat dilihat pada Gambar 1. Tahapan penelitian dimulai dari akuisisi data
sebagai basis informasi, diikuti dengan pra-pemrosesan citra guna optimalisasi kualitas data. Langkah
berikutnya mencakup penentuan dan pengaturan parameter model, yang menjadi landasan bagi proses
pelatihan algoritma. Penelitian kemudian dilanjutkan ke tahap pengujian dan evaluasi performa model,
hingga akhirnya ditarik kesimpulan berdasarkan interpretasi data hasil pengujian tersebut.

Pengumpulan Data Citra Pepaya
dari Roboflow (Gambar & Label)

|

Pra-Pemrosesan dan
Augmentasi Data

|

Fembagian Data

|

Training & Validasi Model

|

Evaluasi Model

A

Perfoma
Memadai?

TudaH Tuning Hyperparameter

¥a
¥

Hasil Deteksi

Gambar 1. Alur Penelitian

31. Akuisisi Dataset

Data yang digunakan dalam penelitian ini bersumber dari repositori dataset publik Roboflow. Total
dataset yang dikumpulkan berjumlah 3.172 citra digital buah pepaya (Carica papaya L.) yang diambil dalam
berbagai kondisi lingkungan dan pencahayaan untuk merepresentasikan variabilitas data yang tinggi. Setiap
citra dalam dataset telah melalui proses anotasi manual dan diberi label berdasarkan tiga kategori tingkat
kematangan, yaitu: Mentah (Unripe), Mengkal (Half-ripe), dan Matang (Ripe) (lihat Tabel 1).

32. Pra-Pemrosesan Data

Selanjutnya adalah tahap pra-pemrosesan, tahap ini dilakukan untuk menstandarisasi format data input
agar sesuai dengan arsitektur model YOLOv11 [12]. Langkah pertama adalah penyeragaman dimensi citra
(resizing) menjadi ukuran 640x640 piksel. Proses ini menerapkan teknik letterboxing, yaitu mempertahankan
rasio aspek asli citra dengan menambahkan area kosong (padding) pada sisi gambar agar tidak terjadi distorsi
bentuk buah yang dapat mempengaruhi akurasi deteksi. Selain itu, nilai intensitas piksel pada citra
dinormalisasi dari rentang 0 - 255 menjadi 0 - 1 untuk mempercepat proses konvergensi gradien selama
pelatihan [13].

Untuk meningkatkan kemampuan generalisasi model dan mencegah terjadinya overfitting pada data
latih yang terbatas, teknik augmentasi data diterapkan secara otomatis (on-the-fly) selama proses pelatihan
[14]. Berdasarkan konfigurasi eksperimen, augmentasi diaktifkan (augment=True) menggunakan pustaka

MALCOM - Vol. 6 Iss. 1 January 2026, pp: 229-240 231



MALCOM-06(01): 229-240

bawaan Ultralytics. Teknik utama yang diterapkan meliputi Mosaic Data Augmentation, yaitu penggabungan
empat citra latih yang berbeda ke dalam satu bingkai input secara acak. Metode ini memaksa model untuk
belajar mendeteksi objek dalam skala yang lebih kecil dan konteks latar belakang yang kompleks [15]. Selain
itu, transformasi geometri dan kolorimetri juga diaplikasikan, meliputi pembalikan horizontal (random
horizontal flip) dengan probabilitas 50%, penyesuaian skala (scaling), serta perturbasi warna pada ruang
warna HSV (Hue, Saturation, Value) untuk mensimulasikan variasi kondisi pencahayaan di lingkungan
nyata.

Table 1. Contoh Dataset

Tingkat Kematangan
Mengkal

33. Arsitektur Model YOLOv11

Arsitektur yang digunakan dalam penelitian ini adalah varian Small dari YOLOv1l (YOLOv11s),
sebuah detektor satu tahap (one-stage detector) terbaru yang dikembangkan oleh Ultralytics. Dibandingkan
dengan versi sebelumnya, YOLOv11s memperkenalkan pembaruan pada blok ekstraksi fitur yang bertujuan
untuk meningkatkan efisiensi parameter tanpa mengurangi akurasi model [8]. Secara umum, arsitektur ini
terdiri dari tiga komponen utama, yaitu: Backbone, Neck, dan Head. Komponen Backbone berfungsi untuk
mengekstraksi fitur hirarkis dari citra input dengan menggunakan modul konvolusi yang dimodifikasi (C3k2)
serta Spatial Pyramid Pooling - Fast (SPPF) untuk menangkap konteks spasial global. Pada bagian Neck,
digunakan struktur Path Aggregation Network (PANet) yang berperan dalam menggabungkan fitur multi-
skala, sehingga mampu mendeteksi objek dengan berbagai ukuran, baik kecil maupun besar. Bagian Head
beroperasi menggunakan mekanisme anchor-free yang memisahkan proses Klasifikasi objek dan regresi
kotak pembatas (decoupled head), memungkinkan pelatihan model berjalan dengan konvergensi yang lebih
cepat [16].

Selama proses pelatihan, optimasi bobot model dilakukan dengan meminimalkan Total Loss Function.
Loss Function pada YOLOv11s merupakan gabungan dari tiga komponen utama, yaitu: Classification Loss,
Box Regression Loss, dan Distribution Focal Loss. Total Loss Function dapat diformulasikan pada
persamaan 1.

Liotar = MooxLye, T Actscop, T Adricg, 1)
Dimana A adalah koefisien penyeimbang untuk setiap komponen kerugian. Untuk komponen

klasifikasi (L,,;), digunakan Binary Cross Entropy (BCE) Loss untuk mengukur perbedaan distribusi
probabilitas prediksi dengan label kematangan pepaya yang sebenarnya, diformulasikan pada persamaan 2.

Leps = =22 [yilog(3,) + (1 — y) log(1 - )] 6

Sedangkan untuk regresi kotak pembatas (£;,,), model menggunakan Complete Intersection over
Union (CloU) Loss. CloU dipilih karena kemampuannya mengatasi kelemahan loU standar dengan
memperhitungkan jarak pusat bounding box dan rasio aspek, yang dinyatakan dalam persamaan 3.
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p?(b,b9°)

Legoy =1—10U + — toav 3)

c

Dimana p? adalah jarak Euclidean antara titik pusat kotak prediksi b dan ground truth (b9%), ¢ adalah
panjang diagonal dari kotak penutup terkecil yang melingkupi kedua kotak, o adalah parameter
keseimbangan, dan v mengukur konsistensi rasio aspek. Penggunaan Loss Function ini memastikan bahwa
model tidak hanya memprediksi kelas kematangan yang benar, tetapi juga menghasilkan posisi kotak deteksi
yang presisi.

34. Evaluasi Kinerja Model

Untuk mengukur efektivitas model YOLOv11s dalam mendeteksi dan mengklasifikasikan tingkat
kematangan pepaya, penelitian ini menggunakan serangkaian metrik evaluasi kuantitatif standar yang
diadopsi dari protokol evaluasi Microsoft COCO. Indikator utama yang digunakan meliputi Precision (P),
Recall (R), F1-Score, dan Mean Average Precision (mAP). Perhitungan metrik ini didasarkan pada elemen
Confusion Matrix yaitu: True Positive (TP) untuk deteksi benar, False Positive (FP) untuk deteksi salah, dan
False Negative (FN) untuk objek yang gagal terdeteksi [17].

3.4.1. Presisi (Precision)

Presisi digunakan untuk mengukur tingkat ketepatan model dalam memprediksi kelas positif. Nilai ini
merepresentasikan rasio antara jumlah deteksi yang benar (True Positive) terhadap total seluruh objek yang
diprediksi sebagai positif oleh model. Nilai presisi yang tinggi mengindikasikan bahwa model memiliki
tingkat kesalahan deteksi palsu yang rendah. Persamaan presisi ditunjukkan pada persamaan 4.

TP
TP+FP

Precision = 4
Dimana: TP adalah jumlah objek yang dideteksi dengan benar sesuai label kelasnya dan FP adalah
jumlah objek yang salah dideteksi sebagai kelas tersebut.

3.4.2. Sensitivitas (Recall)

Sensitivitas, atau sering disebut recall, mengukur kemampuan model dalam menemukan kembali
seluruh objek yang relevan yang ada di dalam dataset. Nilai ini dihitung berdasarkan rasio antara deteksi
yang benar (True Positive) terhadap jumlah total objek asli yang seharusnya terdeteksi (True Positive
ditambah False Negative). Nilai recall yang tinggi menunjukkan bahwa model mampu meminimalisir objek
yang terlewat. Persamaan recall ditunjukkan pada persamaan 5.

TP
TP+FN

Recall = 5)
Dimana: TP adalah jumlah deteksi yang benar dan FN adalah jumlah objek asli yang gagal dideteksi
oleh model.

3.4.3. F1-Score

Mengingat sering terjadinya trade-off antara Precision dan Recall, digunakan metrik F1-Score sebagai
rata-rata harmonik dari keduanya. Nilai ini memberikan gambaran keseimbangan performa model, terutama
ketika distribusi data antar kelas tidak seimbang. Persamaan F1-Score ditunjukkan pada persamaan 6.

Fl=2x PrecisionXRecall (6)

Precision+Recall

Dimana: Precision adalah nilai ketepatan prediksi model, Recall adalah nilai sensitivitas model dan
Nilai F1 mendekati 1 mengindikasikan keseimbangan optimal antara presisi dan sensitivitas.

3.4.4. Mean Average Precision (mAP)

Metrik utama yang menjadi acuan performa deteksi objek adalah Mean Average Precision (mAP).
Nilai ini merepresentasikan rata-rata luas area di bawah kurva Precision-Recall (PR Curve) untuk seluruh
kelas kategori (N). Penelitian ini mengevaluasi dua varian mAP: mAP@50 (mAP pada ambang batas
Intersection over Union sebesar 0.5) dan mAP@50-95 (rata-rata mAP pada rentang loU 0.5 hingga 0.95
dengan interval 0.05). Persamaan mAP didefinisikan sebagai persmaan 7.

mAP =% X, [} P(R) dR @
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Dimana: N adalah jumlah total kelas kategori yang diuji (dalam penelitian ini N = 3), P(R) adalah
fungsi Presisi sebagai fungsi dari Recall dan fol P(R) dR adalah integral yang menghitung luas area di bawah
kurva Precision-Recall (Average Precision).

35. Validasi

Proses validasi dalam penelitian ini dilakukan menggunakan metode Hold-out Validation, di mana
performa model dievaluasi secara iteratif terhadap dataset validasi pada setiap akhir epoch pelatihan.
Pendekatan ini bertujuan untuk memantau kemampuan generalisasi model dan mendeteksi indikasi
overfitting atau underfitting secara dini [18]. Selama proses validasi, bobot model tidak diperbarui, namun
validation loss dan akurasi (mAP) dihitung untuk menentukan apakah model mengalami peningkatan
konvergensi.

Untuk menjamin efisiensi pelatihan dan mencegah overtraining, mekanisme Early Stopping
diterapkan. Berdasarkan konfigurasi eksperimen, parameter patience ditetapkan sebesar 50 epoch. Artinya,
proses pelatihan akan dihentikan secara otomatis jika tidak terjadi peningkatan Kinerja pada metrik validasi
utama selama 50 epoch berturut-turut [19]. Selain itu, sistem akan secara otomatis menyimpan bobot model
terbaik (best weights) berdasarkan fitness score tertinggi, bukan sekadar mengambil bobot dari epoch
terakhir. Fungsi fitness score ini didefinisikan sebagai kombinasi terbobot dari mAP pada ambang batas loU
yang berbeda untuk memprioritaskan presisi deteksi yang ketat, ditunjukkan pada persamaan 8.

Fitness = w; - mAPy5 + w, - mAP;5.095 (8)

Dimana w, adalah bobot koefisien untuk mAP pada loU 0.5 yang bernilai 0.1, sedangkan w, adalah
bobot untuk rata-rata mAP pada rentang loU 0.5 hingga 0.95 yang bernilai 0.9. Mekanisme pembobotan ini
memprioritaskan model yang memiliki ketepatan lokalisasi tinggi, memastikan bahwa sistem tidak hanya
mampu mendeteksi keberadaan buah pepaya tetapi juga menentukan posisi kotak pembatas (bounding box)
dengan presisi yang maksimal.

4. HASIL DAN PEMBAHASAN

Seluruh hasil eksperimen yang diperoleh dari implementasi algoritma YOLOv11s dalam mendeteksi
tingkat kematangan buah pepaya akan disajikan pada bab ini. Hasil penelitian ini dipaparkan melalui dua
pendekatan analisis utama, yaitu analisis kuantitatif dan analisis kualitatif. Analisis kuantitatif difokuskan
pada evaluasi metrik kinerja model selama proses pelatihan dan validasi, yang mencakup pergerakan kurva
Loss Function, serta metrik evaluasi seperti Precision, Recall, dan nilai Mean Average Precision (mAP) [20].
Sementara itu, analisis kualitatif bertujuan untuk memverifikasi kemampuan model dalam melakukan
lokalisasi dan klasifikasi objek pada citra uji yang belum pernah dilihat sebelumnya (unseen data). Selain itu,
dilakukan pembahasan mendalam mengenai interpretasi fenomena yang muncul pada Confusion Matrix
untuk memahami pola kesalahan deteksi antar kelas, yang selanjutnya mengonfirmasi efektivitas model yang
diusulkan.

4.1.  Akuisisi Data

Tahap awal eksperimen ini melibatkan konsolidasi data citra buah pepaya yang siap digunakan dalam
pelatihan model. Proses pengumpulan data dilakukan melalui platform manajemen dataset Roboflow, yang
menghasilkan total dataset final sebanyak 3.172 citra. Dataset ini telah melalui tahap validasi kualitas untuk
memastikan setiap citra dilengkapi dengan anotasi (bounding box) yang akurat, sesuai dengan tiga kategori
kelas target: Mentah (Unripe), Mengkal (Half-ripe), dan Matang (Ripe).

Visualisasi statistik dan manajemen dataset yang ditampilkan pada antarmuka Roboflow dapat dilihat
pada Gambar 1. Platform ini memberikan transparansi terkait distribusi kelas dan kesehatan dataset. Seperti
yang ditunjukkan pada dashboard, data telah digbagi secara otomatis menjadi tiga sub-himpunan, yaitu 2.221
citra untuk data latih (training set), 636 citra untuk data validasi (validation set), dan 315 citra untuk data uji
(testing set). Ketersediaan jumlah data yang cukup besar ini menjadi faktor penting bagi model YOLOv11s
dalam mempelajari fitur-fitur variatif buah pepaya dan mencapai tingkat konvergensi yang optimal [21].

4.2. Pra-Pemrosesan Data

Implementasi tahapan pra-pemrosesan data yang telah dirancang pada metodologi berhasil dieksekusi
oleh sistem sesaat sebelum proses pelatihan dimulai. Keberhasilan proses ini dibuktikan melalui visualisasi
batch data latih pertama yang ditampilkan pada Gambar 2. Berdasarkan hasil tersebut, terlihat bahwa teknik
augmentasi Mosaic bekerja secara efektif dengan menggabungkan empat potongan citra pepaya yang berbeda
ke dalam satu bingkai input berukuran 640x640 piksel.

Visualisasi ini memperlihatkan adanya peningkatan kompleksitas data yang signifikan dibandingkan
citra asli. Teramati variasi skala objek yang beragam, di mana sebagian buah pepaya tampak diperbesar
untuk menonjolkan tekstur kulit, sementara bagian lain diperkecil untuk simulasi deteksi jarak jauh. Selain
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itu, transformasi warna dan pencahayaan juga terlihat jelas, menciptakan variabilitas visual yang kaya.
Kondisi data hasil pra-pemrosesan yang heterogen ini sangat krusial karena memaksa model YOLOv11s
untuk tidak sekadar menghafal bentuk standar pepaya, melainkan mempelajari fitur-fitur kunci yang invarian
terhadap perubahan posisi, potongan, maupun kondisi cahaya yang ekstrem.

- <]

d -
~

Papaya-maturity

Gambar 2. Hasil pra-pemrosesan data latih menggunakan teknik Mosaic Augmentation.

4.3. Arsitektur YOLOV11s

Berdasarkan inisialisasi pelatihan menggunakan bobot pra-latih, model berhasil dibangun dengan
struktur jaringan yang efisien. Ringkasan arsitektur model yang dihasilkan selama proses pelatihan
menunjukkan bahwa YOLOv11s memiliki kompleksitas komputasi yang moderat, menjadikannya sangat
layak untuk diimplementasikan pada perangkat dengan sumber daya terbatas. Model ini terdiri dari ratusan
lapisan yang terstruktur dalam blok Backbone, Neck, dan Head. Total parameter yang dapat dilatih dan
operasi floating-point (GFLOPs) menunjukkan bahwa model memiliki kapasitas yang cukup untuk
mempelajari fitur kompleks dari kulit pepaya tanpa membebani memori GPU secara berlebihan. Uuntuk
memastikan reprodusibilitas hasil, konfigurasi hyperparameter final yang digunakan selama proses pelatihan
dirangkum dalam Tabel 2.

Table 2. Konfigurasi Hyperparameter Pelatihan

Parameter Nilai Konfigurasi
Epochs 10
Batch Size 16
Optimizer Stochastic Gradient Descent (SGD)
Initial Learning Rate 0.01
Momentum 0.937
Weight Decay 0.0005
Device GPU (CUDA)

Konfigurasi hyperparameter yang disajikan pada Tabel 2 dirancang secara strategis untuk
mengoptimalkan keseimbangan antara kecepatan konvergensi dan kemampuan generalisasi model
YOLOv11s [22]. Penetapan batas maksimum pelatihan sebanyak 100 epoch memberikan durasi yang
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memadai bagi jaringan untuk mengekstraksi fitur visual pepaya secara mendalam, namun mekanisme Early
Stopping dengan parameter patience sebesar 50 epoch diterapkan sebagai katup pengaman untuk mencegah
overfitting dengan menghentikan iterasi apabila stagnasi kinerja terdeteksi pada data validasi. Proses optimasi
bobot dikendalikan oleh algoritma Stochastic Gradient Descent (SGD) dengan momentum 0.937 dan laju
pembelajaran awal 0.01, yang bertujuan untuk mempercepat pergerakan gradien menuju titik optimal global
sekaligus meredam fluktuasi yang tidak diinginkan. Selain itu, stabilitas arsitektur diperkuat melalui
penerapan regularisasi weight decay sebesar 0.0005 untuk membatasi kompleksitas bobot jaringan, didukung
oleh eksekusi komputasi pada akselerator GPU dengan ukuran batch 16 yang memastikan efisiensi
penggunaan memori selama proses propagasi balik.

4.4. Evaluasi Kinerja Model

Evaluasi kinerja model dilakukan secara menyeluruh untuk memvalidasi keandalan algoritma
YOLOv1ls dalam mengklasifikasikan tingkat kematangan pepaya. Analisis ini didasarkan pada metrik
Precision, Recall, F1-Score, dan Mean Average Precision (mAP) yang dihasilkan setelah proses pelatihan
selesali, serta visualisasi kesalahan prediksi melalui confusion matrix [23].

4.4.1. Analisis Metrik Pelatihan (Training Matrics)

Pembelajaran model selama 100 epoch divisualisasikan melalui grafik Loss Function dan metrik
performa pada Gambar 3. Berdasarkan grafik tersebut, terlihat tren penurunan yang konsisten pada ketiga
komponen utama (box_loss, cls_loss, dan dfl_loss) baik pada data latih maupun validasi. Penurunan ini
mengindikasikan bahwa model berhasil meminimalkan kesalahan prediksi koordinat dan klasifikasi seiring
berjalannya waktu tanpa menunjukkan gejala overfitting yang signifikan.

Metrik precision dan recall menunjukkan tren peningkatan yang tajam pada 50 epoch awal dan mulai
stabil mendekati akhir pelatihan. Nilai mMAP@50 mencapai puncaknya di kisaran 0.857, yang menegaskan
bahwa model mampu menjaga keseimbangan yang baik antara ketepatan prediksi positif dan sensitivitas
terhadap keberadaan objek.

train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B}

—e— results
-+ smooth

1.30

5 10 5 10 5 10 5 10 5 10
valfbox_loss valfcls_loss valfdfl_loss metrics/mAPS0O{B) metrics/mAP50-95(B)

s 10 5 10 s 10 5 10 5 10
Gambar 3. Grafik metrik pelatihan (Loss, Precision, Recall, dan mAP)

4.4.2. Analisis Kurva Precision-Recall (PR Curve)

Untuk mengevaluasi kinerja deteksi pada setiap kelas secara spesifik, digunakan kurva Precision-
Recall (PR Curve) sebagaimana ditampilkan pada Gambar 4. Kurva ini menggambarkan trade-off antara
precision dan recall pada berbagai ambang batas kepercayaan.

Berdasarkan grafik, model mencatatkan kinerja rata-rata global (all classes) mMAP@0.5 sebesar 0.857.
Jika dirinci per kategori (lihat Tabel 3).

Table 3. Ringkasan Nilai Average Precision (AP) per Kelas

Kelas Kategori Average Precision (AP) @0.5
Belum Matang 0.888
Matang 0.875
Setengah Matang 0.808
Rata-rata (mAP) 0.857
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Precision-Recall Curve

—— belum_matang 0.888
—— matang 0.875

—

—— setengah_matang 0.808
= all classes 0.857 mAP@O0.5

Precision

0o 02 va a6 o8 10
Recall

Gambar 4. Kurva Precision-Recall untuk setiap kelas tingkat kematangan pepaya.

4.4.3. Analisis Confusion Matrix

Analisis mendalam mengenai kesalahan klasifikasi dilakukan menggunakan Normalized Confusion
Matrix pada Gambar 5. Matriks ini memetakan prediksi model (sumbu Y) terhadap label sebenarnya (sumbu
X).

belurn_matang

Predicted

setengah_matang

background -

belum_matang -
matang -
background -

setengah_matang -

Gambar 5. Normalized Confusion Matrix yang menunjukkan distribusi akurasi prediksi.

Secara diagonal, model menunjukkan akurasi yang tinggi: 85% untuk kelas Belum Matang, 86%
untuk kelas Matang, dan 75% untuk kelas Setengah Matang. Kesalahan prediksi terbesar terjadi pada kelas
"Setengah Matang", di mana terdapat confusion sebesar 10% data Setengah Matang yang diprediksi sebagai
Matang, dan sebaliknya 7% data Matang diprediksi sebagai Setengah Matang. Fenomena ini mengonfirmasi
hipotesis bahwa gradasi warna pada fase transisi merupakan fitur yang paling sulit diekstraksi. Selain itu,
terdapat kesalahan deteksi latar belakang (background FN) sekitar 9%, yang berarti ada sebagian kecil objek
buah yang gagal terdeteksi sama sekali, kemungkinan disebabkan oleh oklusi atau pencahayaan yang minim.

4.5. Validasi Hasil Prediksi

Tahap akhir dari evaluasi model adalah validasi terpadu yang menggabungkan verifikasi statistik dan
pembuktian visual. Secara statistik, model dinyatakan valid karena telah melewati mekanisme Early Stopping
dengan fitness score yang optimal, serta menunjukkan konvergensi Loss Function yang stabil antara data
latih dan data validasi [24]. Hal ini mengonfirmasi bahwa model memiliki kemampuan generalisasi yang
baik dan tidak sekadar menghafal data latih. Untuk membuktikan validitas tersebut secara empiris, dilakukan
pengujian inferensi pada data validasi yang merepresentasikan berbagai skenario lingkungan. Hasil prediksi
visual disajikan pada Gambar 6 dan Gambar 7.

Pada Gambar 6, pengujian difokuskan pada objek tunggal dengan jarak pandang dekat (close-up).
Hasil visual memperlihatkan bahwa model mampu membentuk kotak pembatas (bounding box) yang sangat
presisi melingkupi kontur buah pepaya. Klasifikasi kelas juga terlihat akurat, model berhasil membedakan
fase "Belum Matang" (hijau dominan) dan "Setengah Matang" (hijau kekuningan) dengan confidence score
rata-rata di atas 0.80.

Selanjutnya, ketangguhan model diuji pada skenario yang lebih kompleks seperti ditampilkan pada
Gambar 7. Pada skenario ini, model dihadapkan pada tantangan lingkungan alami, seperti buah yang
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menggantung di pohon dengan latar belakang dedaunan rimbun, kondisi pencahayaan yang tidak merata,
serta objek yang saling menumpuk (occlusion).

Gambar 7. Hasil deteksi pada skenario lingkungan kompleks, meliputi latar belakang dedaunan, buah di
pohon, dan buah yang telah dipotong.

Secara keseluruhan, hasil validasi visual ini selaras dengan metrik mAP 0.857, membuktikan bahwa
model yang dikembangkan siap untuk diimplementasikan pada sistem sortasi pertanian cerdas.

4.6. Diskusi

Penelitian ini menawarkan keunggulan signifikan dalam aspek stabilitas model dan kemampuan
generalisasi dibandingkan studi terdahulu yang menggunakan arsitektur CNN standar. Berbeda dengan
penelitian Sutrisna et al. [10] dan Mahdiyyah et al. [9] yang melaporkan indikasi overfitting tinggi ditandai
dengan fluktuasi akurasi validasi dan kesenjangan performa akibat dataset yang terbatas model YOLOv11s
dalam studi ini menunjukkan konvergensi yang konsisten antara data latih dan validasi. Keberhasilan ini
didukung secara empiris oleh penggunaan volume dataset yang jauh lebih besar (3.172 citra) serta penerapan
strategi Mosaic Augmentation, yang terbukti efektif memperkaya variabilitas fitur pembelajaran sehingga
model lebih adaptif terhadap data baru [25].

Dari segi ketangguhan teknis, algoritma YOLOv11s terbukti mampu mengatasi keterbatasan metode
klasifikasi konvensional maupun pendekatan CNN beresolusi rendah. Jika dibandingkan dengan penelitian
Saputra et al. [11] yang masih bergantung pada pra-pemrosesan cropping manual dan sensitif terhadap
pemilihan kernel SVM, sistem yang diusulkan mampu melakukan deteksi objek secara otomatis (end-to-end)
pada latar belakang lingkungan yang kompleks tanpa intervensi manusia. Selain itu, penggunaan resolusi
input standar 640x640 piksel memperbaiki kelemahan fundamental pada studi Hawibowo dan Muhimmah
[6], di mana reduksi dimensi citra yang ekstrem ke 32x32 piksel menghilangkan detail tekstur halus kulit
pepaya yang krusial untuk membedakan fase transisi kematangan secara akurat.

Secara keseluruhan, penelitian ini memberikan kontribusi nyata sebagai solusi sistem sortasi yang
andal dan objektif guna mendukung ekosistem Smart Farming. Capaian nilai mAP sebesar 0.857 menegaskan
bahwa model ini tidak hanya valid secara akademis, tetapi juga memiliki manfaat praktis yang tinggi untuk
menggantikan metode penyortiran manual yang subjektif dan rentan kesalahan. Implementasi YOLOv11s
yang efisien menjadikannya aset strategis dalam meningkatkan standar kualitas produk pascapanen,
meminimalkan kerugian ekonomi akibat inkonsistensi sortir, serta menjamin mutu produk yang seragam
yang sulit dicapai oleh pengamatan visual manusia semata.
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5. KESIMPULAN

Penelitian ini berhasil membuktikan bahwa implementasi algoritma Deep Learning YOLOv11s efektif
sebagai solusi objektif untuk deteksi tingkat kematangan buah pepaya, dengan capaian performa presisi
global (MAP@50) sebesar 0,857. Validasi pada data uji memperkuat temuan statistik tersebut, di mana model
menunjukkan ketangguhan yang signifikan dalam melokalisasi objek secara presisi pada berbagai kondisi
pencahayaan dan latar belakang lingkungan yang kompleks, serta menunjukkan stabilitas konvergensi yang
menjamin model terhindar dari overfitting. Kontribusi ilmiah utama dari penelitian ini terletak pada
pembuktian kemampuan arsitektur YOLOv11s dalam menangani tantangan variabilitas visual yang sering
menjadi kendala pada metode sortasi manual maupun model komputasi terdahulu.

Meskipun model menunjukkan performa superior pada kelas "Mentah" dan "Matang", keterbatasan
penelitian teridentifikasi pada deteksi fase transisi "Mengkal" (Half-ripe). Analisis kesalahan menunjukkan
adanya tingkat ambiguitas prediksi sebesar 10% terhadap kelas "Matang", serta kegagalan deteksi latar
belakang (background false negative) sebesar 9% pada kondisi oklusi tertentu. Hal ini mengindikasikan
bahwa fitur visual pada fase peralihan warna masih memerlukan ekstraksi yang lebih mendalam.

Berdasarkan temuan tersebut, arah penelitian lanjutan disarankan untuk fokus pada dua aspek
strategis, yang pertama yaitu eksplorasi teknik attention mechanism atau penambahan dataset varietas pepaya
yang lebih beragam untuk meningkatkan sensitivitas pada fase transisi, lalu yang kedua yaitu pengembangan
implementasi model ke dalam perangkat edge computing (loT) atau aplikasi mobile berbasis Android.
Langkah ini krusial untuk mentransformasi model teoretis ini menjadi alat aplikasi praktis yang dapat
digunakan secara real-time oleh petani di lapangan.
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