
Institute of Research and Publication Indonesia (IRPI) 

Public Research Journal of Engineering, Data Technology and Computer Science 

Journal Homepage: https://journal.irpi.or.id/index.php/predatecs 

Vol. 3 Iss. 1 July 2025, pp: 10-21 

ISSN(P): 3024-921X | ISSN(E): 3024-8043 

      10 

 
DOI: https://doi.org/10.57152/predatecs.v3i1.1656 

Deep Learning for Pneumonia Detection in Chest X-Rays using  

Different Algorithms and Transfer Learning Architectures 
 

Danur Lestari1*, Anggi Mulya2,  Aghnia Tatamara3, 

Ryando Rama Haiban4, Habibah Dian Khalifah5 

 
1,2Department of Information Systems, Faculty of Science and Technology,  

Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia  
3Dapartment of Business Management, Faculty of Economics and Administrative Sciences,  

Dokuz Eylul University, Turkey 
4Dapartment of Management Information System, Faculty of Economics and Administrative Sciences, 

Dokuz Eylul University, Turkey 
5Dapartment of Ushuluddin, Faculty of Sharia, Yarmouk University, Jordan 

 

E-Mail: 112150321355@students.uin-suska.ac.id, 212150312142@students.uin-suska.ac.id,  
3aghniatatamara4@gmail.com, 4ryandohaibaan@gmail.com, 5habibahdian7@gmail.com 

 
Received Jul 17th 2024; Revised Mar 26th 2025; Accepted Apr 14th 2025; Available Online Jul 05th 2025, Published Jul 31th 2025 

Corresponding Author: Danur Lestari 

Copyright © 2025 by Authors, Published by Institute of Research and Publication Indonesia (IRPI) 

 
Abstract 

 
Pneumonia is one of the lung conditions brought on by bacterial infections. An accurate diagnosis is necessary for 

successful treatment. A radiologist can typically diagnose the condition based on images from a chest X-ray. The diagnosis 

may be arbitrary for a variety of reasons, such as the indistinctness of certain diseases on chest X-ray pictures or the 

possibility of the illness being mistaken for another. Consequently, clinicians require guidance from computer-aided 

diagnosis tools. We diagnosed pneumonia using two algorithms Convolutional Neural Network (CNN) and Generative 

Adversarial Network (GAN), as well as two architectures ResNet50V2 and InceptionV3. The test results show that the 

ResNet50V2 architecture is superior to the InceptionV3 architecture on the CNN algorithm with an accuracy of 94% versus 

93%. In addition, the test results on the GANs algorithm show that the ResNet50V2 architecture is superior to the 

InceptionV3 architecture with an accuracy of 96%, while the InceptionV3 architecture achieves an accuracy of 92%. 
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1. INTRODUCTION 

Early detection is a critical factor in preventing pneumonia, a disease caused by bacteria, viruses, fungi, 

or other microorganisms, which remains a significant global health challenge. Worldwide, pneumonia is 

responsible for more than 740,000 deaths among children under the age of five and claims over 41,000 adult 

lives annually in the United States alone [1], [2], [3]. Despite advancements in healthcare, the high mortality 

rate underscores the need for timely and accurate diagnosis to facilitate effective treatment and improve patient 

outcomes. 

Chest X-ray imaging is a cornerstone in the diagnosis of pneumonia, as it provides a clear visual 

representation of the lungs, allowing medical professionals to identify infection-related abnormalities. 

However, the manual interpretation of X-rays by radiologists is inherently challenging due to the complexity 

of the images, the variability in disease presentation, and the reliance on the radiologist’s expertise and 

experience [4], [5], [6], [7]. This process can be time-intensive, prone to human error, and often inconsistent, 

especially in regions facing a shortage of skilled radiologists or an overwhelming number of cases. The urgency 

of this research is driven by the rising prevalence of pneumonia and the associated strain on healthcare systems, 

which hinder the efficiency and accuracy of manual diagnosis. An automated diagnostic solution leveraging 

advanced image analysis techniques has the potential to address these challenges, reducing diagnostic delays 

and improving reliability. By streamlining the detection process, such technology can significantly enhance 

the quality of patient care and contribute to reducing pneumonia-related mortality. Therefore, this study aims 

to develop a robust, effective, and accessible automated diagnostic tool to meet this pressing need. 

In this case, deep learning techniques are needed to obtain accurate identification [8]. It has been 

demonstrated that Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) are also 
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very capable of automating the categorization of pneumonia from chest X-ray images [9], [10]. Finding 

pneumonia is one of the many medical imaging tasks that CNNs have proved successful at [11]. Additionally, 

because CNNs can recognize hierarchical features in images, they are frequently utilized in medical image 

analysis. CNNs usually consist of multiple layers of pooling and convolution before the layers are fully 

connected. This allows the network to extract shapes, textures, and patterns from images, which can be used to 

classify images [12], [13]. 

A generator and a discriminator are the two neural networks that make up a GAN. Once the 

discriminator has rendered a judgment, the generator creates a synthetic image that closely resembles the 

original. GANs have proven effective in both image production and image-to-image translation. They can 

generate synthetic X-ray images that are similar to actual images for pneumonia categorization, which can be 

utilized to train Convolutional Neural Networks (CNNs) [14], [15], [16]. One significant advantage of GANs 

is their ability to produce high-quality synthetic images that can augment training datasets, improving the 

robustness of models and enabling better generalization to unseen data. 

In this study, the ResNet and InceptionV3 transfer learning architectures were used along with the 

Mendeley dataset. CNNs are particularly advantageous for image analysis due to their ability to automatically 

learn hierarchical features from images, enabling them to capture complex patterns essential for accurate 

diagnosis. Previous studies using different transfer learning architectures, such as Ayan [17], who utilized 

Xception and VGG16 architectures to diagnose pneumonia, demonstrated that Xception was particularly 

effective in detecting pneumonia cases. Additionally, Rajpurkar [18] identified pneumonia through the 

ChexNet model neural network, a variant of the 121-layer DenseNet, showcasing the effectiveness of CNNs 

in medical image classification.  

The combination of CNN and GAN has shown improved performance in pneumonia classification 

tasks. By utilizing the advantages of both models, researchers can create a more accurate and robust 

classification system. While GAN can produce synthetic images that resemble the actual images, CNN can 

extract features from X-ray images. This can help the model become more generalized and less prone to 

overfitting [19], [20]. 

The growing workload of radiologists and the inconsistent outcomes of human diagnosis processes 

highlight the pressing need for an automated system that can diagnose pneumonia quickly and accurately. This 

paper proposes a novel method to improve the efficacy and precision of pneumonia recognition by combining 

the usage of GAN integration with the ResNet50V2 and InceptionV3 architectures. In contrast to previous 

studies that used architectures such as Xception, VGG16, and DenseNet, this study focuses on evaluating the 

effectiveness of the combination of architectures and GAN integration to create a more robust and capable 

model. It is anticipated that the findings of this study will contribute to the development of a pneumonia 

categorization system that is more precise and useful. In the end, this will result in better treatment outcomes 

and healthcare services as a whole. 

 

2. MATERIAL AND METHOD 

2.1. Methodology 
This research focuses on X-ray classification of pneumonia diseases using the Kaggle dataset. To 

conduct this research, Google Collabs was used as the chosen tool to compare two algorithms: CNN and GAN. 

Thus, the researcher conducted the research stages as shown in Figure 1. 

 

 

Figure 1. Research Methodology 

 

The workflow in this research on the classification of pneumonia X-rays begins with data collection 

from the Kaggle dataset, which contains X-ray images of lungs labeled as pneumonia or non-pneumonia. Once 

the data is collected, the next step is preprocessing, where the data is processed to enhance image quality. This 

process includes resizing the images, normalizing pixel values, and augmenting the data to increase dataset 
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diversity. Subsequently, two different models are applied: CNN, using architectures such as ResNet and 

InceptionV3 for image classification, and GAN, which generate synthetic X-ray images that resemble actual 

images to enrich the dataset. After training the models with the processed and enhanced dataset, model 

evaluation is conducted using metrics such as accuracy, precision, recall, and F1-score to assess their 

performance in classifying X-ray images. Finally, the results from the model evaluation are analyzed to draw 

conclusions about the effectiveness of each algorithm in pneumonia classification.  

 

2.2. Dataset 
Mendeley's Labeled Optical Coherence Tomography (OCT) and the Chest X-Ray Image dataset, which 

comprises 5,860 X-Ray images in JPEG format, were used in this investigation. Both datasets were donated 

by Kermany [21]. A retrospective cohort of pediatric patients from Guangzhou Women and Children's Medical 

Center, Guangzhou, was used to choose chest X-ray images (anterior-posterior). Three primary directories 

comprise the dataset: the train folder, test folder, and val folder. Every directory has two subdirectories: one 

with X-ray pictures of pneumonia and the other with X-ray pictures of healthy lungs. Figure 2 shows a normal 

chest x-ray with clear lungs and no abnormal opacities. Bacterial pneumonia (center) usually shows isolated 

lobar consolidation, as in this case in the right upper lobe (white arrow), while viral pneumonia displays a more 

diffused "interstitial" pattern in both lungs. Table 1 shows the amount of image data collected for the training, 

validation, and testing phases of the suggested model. 

 

 

Figure 2. Sample Data from The Dataset 
 

Table 1. Number of Image Datasets 

Class Train Val Test 

Pneumonia 3420 855 855 

Normal 1268 317 317 

Total 4688 1172 1172 

 

2.3. Convolutional Neural Networks (CNN) 
Artificial intelligence (AI)-based solutions have been explored by numerous academics and studies in 

recent years to address a variety of medical issues. Artificial Neural Networks (ANNs) have proven effective 

in treating a wide range of ailments, including breast cancer, brain tumors, and disease classification using X-

ray images [22]. Figure 3 illustrates CNN's fundamental idea. 

 

 

Figure 3. A simple idea of a CNN 

 

According to Convolutional Neural Networks, the input type is an image. They also believe that 

contemporary deep learning models in computer vision are better suited to CNNs because they can detect low-

level aspects in images, such as edges, and use filters to gather temporal and spatial dependencies [23]. CNNs 

further minimize calculation time because each layer consists of filters or kernels and the weight sharing 

algorithm is lower-parameterized. Because of the spatial extent of the representation created by the preceding 

kernel following convolution, the pooling layer aids in the extraction of dominating features that remain 

constant in position and rotation. Placing this layer between two equal convolution layers, the most popular 

layer is the maximum pooling layer, which "separates the input into boxes of a certain size, and outputs the 
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maximum value from each box". Furthermore, the average of every box is determined using the y average 

pooling layer. When it comes to lowering the dimensionality and needed computing effort, these two methods 

are quite successful. In light of its successes and advancements in the identification of pneumonia, CNN 

performs significantly better on larger data sets, but its effectiveness on smaller data sets is dependent on its 

proper application [24]. 

 

2.4. Generative Adversarial Network (GANs) 
The Generative Adversarial Network is a very new and powerful tool that can produce images using a 

min-max approach in an unsupervised manner [25]. A few of the image generation and manipulation tasks in 

which GANs have proven to be very beneficial are text-to-image synthesis [26], super-resolution (producing 

high-resolution images from low-resolution images) [27], image-to-image translation (e.g., converting sketches 

into images) [28], and image blending (e.g., combining sketches into images) [29]. GAN uses two competing 

networks (x), G(z) and D. The generator G(z) tricks the discriminator D(z) by producing photorealistic images. 

Stated differently, the discriminator's job is to maximize the function V(D,G)'s cost, while the generator's is to 

reduce it [30], [31]. The following Figure 4 shows the concept. 

 

 

Figure 4. A simple idea of GANs 

 

2.5. ResNet50V2 
The computer vision and deep learning communities hold ResNet50V2 in high regard because it offers 

superior performance over AlexNet even when training extremely complex neural networks with hundreds or 

thousands of layers. The usage of brief connections or jumps, which aids the network in overcoming the issue 

of vanishing gradients and accuracy loss, is one of ResNet50V2's primary advantages [32]. Figure 5 shows the 

design of ResNet50V2. 

 

 

Figure 5. ResNet50V2 Architecture 

 

In addition, it reduces instruction errors and speeds up network unification. ResNet50V2 terdiri dari 

lima tahap yang masing-masing berisi tiga lapisan konvolusi dan blok konvolusi dan identitas. Ada juga lebih 

dari 23 juta parameter yang dapat dilatih. A shortcut identity mapping is used to reduce errors and computation 

time. This mapping explicitly allows the layers to interact with the residual mapping and shows it as H(x). In 

addition, non-linear layers can interact with another mapping F(x): =H(x)-x. As a result, the initial mapping 

becomes H(x) :=F(x) + xH(x) :=F(x) + x [31]. 
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2.6. InceptionV3 

By computing 1 x 1 and 3 x 3 convolutions, the InceptionV3 Model increases the depth and width of 

the deep learning network. Overall, the model works well by retrieving the results from all the kernel types 

present in the image [32]. By using convolution factorization to reduce the number of connections and 

parameters, InceptionV3 does not reduce network efficiency. It has a depth of 42 layers and the computational 

cost is only about 2.5 higher than GoogleNet. Incremental Classifier is used as a regularizer that reduces the 

network size effectively in InceptionV3. Label alignment is used to keep the largest logistics from becoming 

much larger than the others. InceptionV3 becomes more efficient and cheaper thanks to these features. Figure 

6 shows the design of InceptionV3. 

 

 
Figure 6. InceptionV3 Architecture 

 

2.7. Confusion Metrics 
Performance metrics such as accuracy, precision, recall, and F1 score are used to evaluate the proposed 

architecture. The formulas for these metrics are given the equation 1 – 4. 

 

Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100%         (1) 

 

Recall = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100%                     (2) 

 

Accuracy = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
× 100%                (3) 

 

F1 = 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
× 100%                       (4) 

 

TP, TN, FN, and FP represent true positive, negative positive, false negative, and false positive in 

equations (1) to (4), respectively. 

 

3. RESULTS AND DISCUSSION 

3.1. Preprocessing and Augmentasi Data 
From the dataset previously described, data preprocessing is carried out by dividing the data 80% for 

training data and 20% for testing data from the division obtained training data as many as 4,688 images and 

testing data as many as 1,172 images, then the data is made into different directories.  After the data is 

preprocessed then the data is augmented with random rotation up to 45 degrees, rescale image pixel value 

1/255, shear angle value of 15%, random zoom of 15% and random flip vertically and horizontally. The results 

of the augmentation that has been done can be seen in Figure 7. 

 

 

Figure 7. Data Augmentation 

 

3.2. CNN ResNet50V2 
The ResNet50V2 architecture was pre-trained on the ImageNet dataset as the basis for image 

classification. First, the ResNet50V2 base model was imported without the top classification layer 

(include_top=False) and with pre-trained weights (weights='imagenet'), as well as input images of size 224 x 



 

ISSN(P): 3024-921X | ISSN(E): 3024-8043 

 

      

15 

 

PREDATECS - Vol. 3 Iss. 1 July 2025, pp: 10-21 

224 x 3. All layers in this base model were then set as non-trainable to preserve the pre-trained weights and 

prevent changes during training. Next, the model was extended by adding custom classification layers.The first 

layer is GlobalAveragePooling2D, which converts the average value of a two-dimensional feature map into a 

one-dimensional vector. The next layer is a fully connected layer with 512 neurons and a ReLU activation 

function to learn complex data patterns. During training, 20% of the neurons were randomly deactivated. A 

dropout layer with a rate of 0.2 was added to avoid overfitting. Finally, binary classification was performed 

using an output layer with two neurons and a sigmoid activation function. After that, the following parameters 

were added: epoch size of 30, batch size of 128, applied learning rate of 0.001 and the optimizer used was 

Nadam. Figure 8 is the accuracy and loss graph of CNN ResNet50V2.  

 

 

Figure 8. Accuracy and Loss Graph of CNN ResNet50V2 

 

Figure 8 shows the model training results with accuracy and loss metrics for the training and validation 

data. In the accuracy graph, it can be seen that the accuracy increases rapidly in the first few epochs and reaches 

a stable high value around the 3rd epoch, with the validation accuracy fluctuating slightly more but remaining 

in a good range. In the loss graph, there is a significant decrease in the early epochs and the loss value tends to 

stabilize low after the 3rd epoch, although there are some fluctuations especially in the validation data. Overall, 

the model performs well with high accuracy and low loss, although there are some fluctuations in the validation 

data that need to be considered to ensure there is no sign of overfitting. 

 

3.3. CNN InceptionV3 
The InceptionV3 architecture was pre-trained on the ImageNet dataset as the basis for image 

classification. First, the InceptionV3 base model was imported without the top classification layer 

(include_top=False) and with pre-trained weights (weights='imagenet'), as well as input images of size 224 x 

224 x 3. All layers in this base model were then set as non-trainable to preserve the pre-trained weights and 

prevent changes during training. Afterwards, more layers of custom classification were added to the model. 

The initial layer is in charge of ascertaining the input image's dimensions. Next, features are extracted from the 

image using the InceptionV3 core model. The two-dimensional feature map is reduced in size by the Global 

Average Pooling 2D layer to a one-dimensional vector with uniformly distributed values. Subsequently, a fully 

linked layer with 512 neurons and ReLU activation function is used to understand complicated data patterns. 

During training, half of the neurons are randomly deactivated. To avoid overfitting, a dropout layer with a rate 

of 0.2 is introduced. Lastly, for binary classification, an output layer comprising two neurons and a sigmoid 

activation function are employed. Next, the Nadam optimizer, learning rate of 0.001, batch size of 128 and 

epoch size of 30 were introduced. Figure 9 displays the InceptionV3 CNN's accuracy and loss graphs.  
 

 

Figure 9. Accuracy and Loss Graph of InceptionV3 CNN 

 

The accuracy and loss metrics for the training and validation data are displayed together with the model 

training outcomes in Figure 9. The accuracy graph shows that the validation accuracy fluctuates slightly more 
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but stays within a good range, while the accuracy grows quickly in the early epochs and reaches a steady high 

value around the second epoch. On the loss graph, there is a significant decrease in the initial epoch, with the 

loss value decreasing drastically until the 2nd epoch and then stabilizing low, although there are some small 

fluctuations in the validation data. Overall, the model performed well with high accuracy and low loss, although 

the fluctuations in the validation data show that the model needs to be watched to prevent overfitting. 

 

3.4. GANs ResNet50V2 
The ResNet50V2 architecture was pre-trained on the ImageNet dataset as the basis for image 

classification. First, the ResNet50V2 base model was imported without the top classification layer 

(include_top=False) with input images of size 224 x 224 x 3. The layers in this base model were frozen 

(trainable=False) to preserve the trained weights and prevent changes during training. Next, the model was 

extended by adding custom classification layers. Values of the two-dimensional feature map are averaged into 

a one-dimensional vector by GlobalAveragePooling2D in the first layer. Subsequently, complicated data 

patterns are learned using a fully linked layer that has 128 neurons and a ReLU activation function. Fifty 

percent of the neurons are silenced at random during training. A dropout layer with a rate of 0.5 is added to 

avoid overfitting. Lastly, an output layer with two neurons and a sigmoid activation function is employed for 

binary classification. Furthermore, the following parameters were added: epoch size 30, batch size 128, 

learning rate 0.001, and the AdamW optimizer was used. The accuracy and loss graphs of the ResNet50V2 

GAN are shown in Figure 10.  

 

 

Figure 10. Accuracy and loss graphics of ResNet50V2 GANs 

 

Figure 10 shows the changes in accuracy and loss during the training and validation of the model in 7 

epochs. In the accuracy graph, it can be seen that the training accuracy (blue line) generally increases and 

stabilizes around 0.92 to 0.94 after the 2nd epoch. The validation accuracy (red line) shows larger fluctuations 

but tends to follow the same pattern as the training accuracy, reaching the highest value around 0.94 at the 2nd 

epoch. In the loss graph, the training loss (blue line) decreases sharply in the first epoch and stabilizes at a 

lower value after that. The validation loss (red line) also shows a significant decrease at the beginning, but 

larger fluctuations occur thereafter. Overall, the model shows good learning ability with high accuracy and low 

loss, although there are some fluctuations in the validation metrics that could indicate variations in performance 

on data that has not been seen before. 

 

3.5. GANs InceptionV3 

This InceptionV3 architecture utilizes two different architectures which are generator and classifier 

based. The generator aims to create a new image from random vectors by converting it into a 3D tensor through 

the Dense and Reshape layers, followed by the Conv2DTranspose layer to enlarge the image to the desired size 

with ReLU activation and tanh activation at the output layer. In contrast, the InceptionV3-based classifier 

extracts features from the input image using an architecture that has been trained on the ImageNet dataset. The 

Flatten layer is added to the feature map to turn it into a one-dimensional vector after the InceptionV3 layer 

has been frozen to maintain the trained weights. To learn complicated patterns and avoid overfitting, a thick 

layer with ReLU and Dropout activation is employed prior to the output layer with sigmoid activation for 

binary classification. Furthermore, the following parameters were added: epoch size 30, batch size 128, applied 

learning rate of 0.001, and the optimizer used was AdamW. The accuracy and loss graphs of the InceptionV3 

JST are shown in Figure 11. 

Figure 11 displays the variations in accuracy and loss over the model's 25 epochs of training and 

validation. The training accuracy (blue line) in the accuracy graph rises dramatically in the first few epochs 

before stabilizing at 0.9 after the fifth epoch. Though there are some minor oscillations, the validation accuracy 

(red line) likewise stabilizes at 0.9 and exhibits a similar pattern to the training accuracy. The training loss 

(blue line) and validation loss (red line) on the loss graph exhibit a steep decline in the first few epochs before 

nearly leveling out at a very low value. This demonstrates how the model effectively minimizes prediction 
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error right from the start of training and keeps up that performance throughout the remaining epochs. With 

both training and validation data, the model has a significant capacity for learning together with minimal loss 

and excellent accuracy. 

 

 

Figure 11. Accuracy and loss graphics of InceptionV3 GANs 

 

These experimental results could be influenced by the quality of the dataset, data augmentation 

techniques, and InceptionV3's architecture which is effective in extracting hierarchical features. The stability 

of accuracy and low loss indicates the model is able to learn patterns well, but further analysis is needed to 

ascertain whether these results are influenced by key attributes such as the training or preprocessing parameters 

used. 

 

3.6. Results 

3.6.1. Confusion Matrics 

Figure 12 shows that the ResNet50V2 CNN has a good performance in pneumonia detection. Out of 

885 true normal cases, this model correctly classified 66 cases and misclassified 251 cases as pneumonia. Of 

the 855 true pneumonia cases, 181 were misclassified as normal, and 674 were correctly predicted as 

pneumonia. This model has the lowest error rate in classifying normal cases as pneumonia and is more accurate 

in correctly detecting pneumonia cases. 

In Figure 13, the InceptionV3 CNN performs quite well but slightly lower than the ResNet50V2 CNN. 

Out of 885 true normal cases, CNN InceptionV3 correctly classified 88 cases and misclassified 229 cases as 

pneumonia. Of the 855 true pneumonia cases, 236 were misclassified as normal, and 619 were correctly 

predicted as pneumonia. Although there is an improvement in correctly detecting pneumonia cases compared 

to the ResNet50V2 CNN, there is still a fairly high error rate in classifying normal cases as pneumonia. 

 

 
 

Figure 12. Confusion Metrics CNN ResNet50V2 

 
 

Figure 13. Confusion Metrics CNN InceptionV3 

 

Figure 14 shows the performance of GANs ResNet50V2 which is between CNN ResNet and CNN 

Inception. Out of 885 true normal cases, ResNet50V2 GANs correctly classified 84 cases and misclassified 

233 cases as pneumonia. Of the 855 true pneumonia cases, 233 were misclassified as normal, and 622 were 

correctly predicted as pneumonia. These ResNet50V2 GANs performed better than InceptionV3 GANs but 

slightly lower than InceptionV3 CNNs. 

In Figure 15 GANsInceptionV3 has the lowest performance in pneumonia detection among all. Out of 

885 true normal cases, GANsInceptionV3 correctly classified 103 cases and misclassified 214 cases as 

pneumonia. Of the 855 true pneumonia cases, 267 were misclassified as normal, and 588 were correctly 

predicted as pneumonia. GANsInceptionV3 had a high error rate in classifying normal cases as pneumonia and 

also had significant errors in classifying pneumonia cases as normal. 
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Figure 14. Confusion Metrics GANs ResNet50V2 

 
Figure 15. Confusion Metrics GANsInceptionV3 

 

3.6.2. Accuracy Result 

Table 2 shows a comparison of the accuracy results where the CNN ResNet50V2 model achieved an 

accuracy of 94%, while the CNN InceptionV3 model achieved an accuracy of 93%. The use of GANs improved 

accuracy in several models, with GANs ResNet50V2 achieving the highest accuracy of 96%, while GANs 

InceptionV3 showed a decrease in accuracy to 92%. 

 

Table 2. Comparison of accuracy results  

Algorithms ResNet50V2 InceptionV3 

CNN 94% 93% 

GANs 96% 92% 

 

3.6.3. Test Result 

Figure 16 shows the test results of the ResNet50V2 CNN model on chest X-ray images to detect 

pneumonia. The model gives a probability of 77.20% for pneumonia, while the normal probability is 10.81%. 

This shows a fairly good performance in identifying pneumonia, although there is potential for improvement 

in the prediction of normal cases. Figure 17 displays the test results of the InceptionV3 CNN model on a chest 

X-ray image. The model produced a pneumonia probability of 85.07% and a normal probability of 57.31%. 

These results show that the model has a higher confidence level in detecting pneumonia, but there is a high 

possibility for errors in distinguishing between normal and pneumonia conditions. 

 

 
 

Figure 16. CNN ResNet50V2 test results 

 
 

Figure 17. CNN InceptionV3 test results 

 

Figure 18 Visualizes the test results of the ResNet50V2 GANs model. This model gives a probability 

of 75.85% for pneumonia and 11.13% for normal conditions. Although the results are similar to the 

ResNet50V2 CNN model, the use of GANs helps generate additional data that supports the model training. 

Figure 19 illustrates the test results of the InceptionV3 GANs model. This model recorded a pneumonia 

probability of 83.04% and a normal probability of 59.28%. Although the performance is almost on par with 
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InceptionV3 CNN, this model shows difficulty in distinguishing between normal and pneumonia images with 

a higher error rate. 

 

 
 

Figure 18. GANs ResNet50V2 test results 

 
 

Figure 19. CNN InceptionV3 test results 

 

The results of testing the four images above with pneumonia chest X-ray images show that each image 

can detect indications of pneumonia. The analysis results show that the InceptionV3 CNN model has the best 

percentage in detecting pneumonia with the highest probability. Although the probability value of the 

InceptionV3 GAN model is almost the same, this model still has difficulty distinguishing normal pneumonia 

images from normal images. Meanwhile, the CNN ResNet50V2 and GANs ResNet50V2 models have the same 

pneumonia probability value and normal probability value. 

  

4. CONCLUSION 

In this work, we assessed how well two architectures CNN and GAN performed in diagnosing 

pneumonia. When training the models, we employed techniques for both transfer learning and fine-tuning. 

Following the training phase, we compared the test outcomes of the two topologies for each algorithm. The 

test findings demonstrate that, with an accuracy of 94% on the CNN algorithm, the ResNet50V2 design 

outperforms the InceptionV3 architecture, whereas the latter only managed a 93% accuracy. Furthermore, the 

test results on the GANs algorithm show that the ResNet50V2 architecture is superior to the InceptionV3 

architecture with an accuracy of 96%, while the InceptionV3 architecture achieved an accuracy of 92%. In the 

CNN algorithm, the ResNet50V2 architecture detects pneumonia cases better than the InceptionV3 

architecture, and the GAN algorithm is also better. The strengths of this study include the use of deep learning 

techniques that proved effective, the integration of GANs that helped overcome overfitting, and the 

comprehensive evaluation of various model combinations. Nevertheless, there were some drawbacks to this 

study as well. For instance, although the ResNet50V2 model's accuracy increased when GANs were used, the 

accuracy decreased when GANs were used with InceptionV3. Furthermore, the accuracy of the model was the 

main emphasis of this study rather than a thorough examination of how the model was incorporated into current 

clinical workflows or how it affected radiologists' medical judgments. By doing this, we intend to better 

diagnose pneumonia from chest X-ray pictures by using the strengths of both designs. For future research, it is 

recommended to integrate more transfer learning architectures, such as DenseNet121 or Xception, which were 

previously shown to have high performance in medical image classification. In addition, it is necessary to 

explore more complex data augmentation methods to enrich the variety of training data, so that the model can 

be more robust in handling new data. 
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