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Abstract 

 
Eye disease is a significant global health problem, with more than two billion people experiencing vision impairment. Some 

of the main causes of visual impairment include cataracts, glaucoma, diabetic retinopathy, and age-related macular 

degeneration. Early detection of eye disease is very important to prevent blindness. The fundus of the eye, which includes 

the retina and blood vessels, is an important area in the diagnosis of retinal diseases. Fundus disease can cause significant 

vision loss and is one of the leading causes of blindness. Automated analysis of fundus images is used to diagnose common 

retinal diseases, ranging from easily treaTable to very complex conditions. This research discusses eye disease image 

classification using several Convolutional Neural Network (CNN) architectures, namely Inception V3, DenseNet 121, and 

MobileNet V2. The dataset used is 4217 fundus images categorized based on the patient's health condition. Data is 

processed through normalization and augmentation to improve model performance. Experimental results show that 

MobileNet V2 has the highest accuracy of 81.3%, followed by Inception V3 with 77.3%, and DenseNet 121 with 76.7%. 

The use of appropriate CNN models in the classification of eye fundus images can help in early detection of eye diseases, 

thereby preventing further visual impairment. 

 

Keyword: Cataract, Convolutional Neural Network, Diabetic Retinophaty, Eye Fundus, Glaukoma 

 
 

 

1. INTRODUCTION 

The eye is a sense organ that transmits visual stimuli to the brain. The World Health Organization 

(WHO) reports that more than two billion people worldwide suffer from near vision impairment far and one 

billion people experience disturbance in vision eye [1]. In the year 2013, 64.3 million people between the ages 

of 40 and 80 suffered from glaucoma, and estimates suggest that this number will increase to 76 million in 

2020, then to 111.8 million in 2040. The World Health Organization highlights the importance of early 

detection of eye disease to effectively prevent and treat visual impairment [2]. The main causes of visual 
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impairment include a variety of conditions, including Cataracts, Glaucoma, Diabetic retinopathy, AMD, and 

Myopia [3]. In addition to these eye fundus diseases, there are normal classes. 

The normal class of fundus disease refers to a state where the back of the eye, including the retina, 

blood vessels, and optic nerve, shows no signs of abnormality or disease. On a normal fundus examination, 

the retina will appear healthy with consistent color, no bleeding, exudates, or other pathological changes. 

Blood vessels will be clear and regular, and the optic disc (where the optic nerve enters the eye) will have 

clear borders and normal color. This examination is important for detecting various eye conditions such as 

diabetic retinopathy, macular degeneration, and glaucoma at an early stage [4]. 

The fundus is the back portion of the eye, encompassing the retina, choroid, photoreceptor cells, blood 

vessels, and nerve optics [5]. Disease fundus can cause lost vision which is the reason for major blindness [6]. 

Analysis picture fundus automatically used as a tool for diagnosis of disease retina which general [7]. Retinal 

diseases range from fairly common and easily treaTable diseases to quite rare diseases and complex [8]. The 

condition of blood vessels on the retina is an important factor used to diagnose the presence of several eye 

diseases [9]. Chronic Eye Diseases (COD) like myopia, diabetic retinopathy, age-related macular 

degeneration, glaucoma, and cataracts can impact the eyes and potentially lead to severe visual impairment 

or blindness [10]. 

Diabetic Retinopathy (DR) is a disease with retina secondary consequences of damaged capillary retina 

caused by impaired glucose tolerance, and is known as an inflammatory neurovascular complication with 

neurological disorders/ dysfunction, which finally very influences vision and even results in blindness [11]. DR 

is marked by disturbance vessels blood progressive in the retina and it is caused by hyperglycemia and can 

happen in all patients with diabetes, regardless of the level of its severity [12]. Retinopathy diabetes until 

currently has been tested manually by an ophthalmologist. Manual diagnosis of DR is time-consuming [13]. 

The disease remains largely undetected until the late stages of the disease. Therefore, early detection is 

necessary to prevent vision loss [14]. It is mainly pathologically characterized by changes vascular retina 

[15] . Initially, the symptoms are not seen, that's why an inspection routine and early detection by a 

specialist are very important. In addition, retinopathy accelerates the onset of other eye diseases such as 

glaucoma or cataracts [16]. 

Cataract is turbidity lenticular which obscures the lens transparent on the eye man. Cataracts can occur 

consequence of a hydration lens (additional fluid) or denaturation proteins on the lens. Detection of early 

cataracts plays an important role in treatment and in a way significantly can reduce the risk of blindness [17]. 

The impact which is given by cataracts can influence the productivity and mobility of the sufferer which 

impacts the decrease in people's quality of life [4]. Cataracts can be anticipated by carrying out early detection 

when the eyes begin to experience problems [18]. 

Glaucoma (GL) is an eye disease that damages the optic nerve that connects the eye to the brain [19]. 

Glaucoma is  a disease eye triggered by increasing pressure fluid on the eye thereby damaging the optic nerve 

and causing partial or complete loss of vision [20]. Glaucoma is an asymptomatic condition, and patients do 

not require medical attention until it is in an advanced stage, so diagnosis is often too late to prevent blindness 

[21]. Glaucoma is currently the leading retinal disease, which damages eye because pressure intraocular (IOP) 

on the eye [22]. In the disease glaucoma, the optic disc enlarges from its original size due to an abnormal 

condition in the eye. Signals resulting from vision are sent to the brain via the optic nerve. The region of the 

nerve that does not have rods and cones is called the blind spot [19]. This disease begins with an irregular 

behavior of the eye's drainage flow which ultimately causes an increase in intraocular pressure, which in 

severe stages of the disease worsens the condition of the optic nerve head and causes vision loss [23]. 

Glaucoma progressively damages the optic nerve with degeneration of the nerve fibers, leading to visual 

impairment leading to blindness [24]. Existing glaucoma detection processes have not consistently provided 

satisfactory results. Manual glaucoma detection (i.e. assessment of the optic nerve head) is subjective, 

expensive, time consuming, and variability in physician performance is very high. the aforementioned 

automatic glaucoma detection using fundus images [25]. Diabetic Eye Disease (DED) comprises a group of 

eye conditions, which include Diabetic Retinopathy, Diabetic Macular Edema, Glaucoma, and Cataracts. 

Advances in Artificial Intelligence (AI) offer lots of profit in the detection of DED automatically compared to 

the approach manually. Matter This includes reduced human error, time efficiency, and easier detection of 

minor abnormalities. DED detection system can assembled through technique processing picture combined 

use of technique Machine Learning (ML) or Deep Learning (DL) [26]. 

Artificial Intelligence is a technology that is currently developing rapidly. Almost all midwives have 

to utilize technology, starting from the field industry, banking, health, etc. AI or what is usually called artificial 

computing is a science that has many branches. One of the branches which famous is Machine Learning (ML). 

ML is an algorithm deep mathematics system computer that adopts learning machine use data And do 

predictions in the future. ML has been very developed and has been used, including in the health sector [27]. 

The new branch of ML is Deep Learning (DL) which contains more complex data. DL is an architecture 

which more complex and uses more lots amount layers, so in its application, it is hoped that it can handle 

complex problems and more data [28]. With its ability to extract features important from data without 
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intervention man which significantly, DL has demonstrated outstanding performance in various fields, 

including image recognition, natural language processing, and medical data analysis. This makes DL a very 

promising technology in supporting and improving AI-based diagnostic capabilities, including early detection 

and classification of eye diseases [29]. 

One of the DL algorithms that has good performance in the field of image classification is 

Convolutional Neural Network (CNN). CNN is basically an arrangement of many layers consisting of 

convolution layers, pooling layers, and fully connected layers [30]. CNNs are specifically designed to process 

data in the form of a grid like an image, by automating the extraction of important features from the image. 

In the convolution layer, filters are applied to detect local patterns such as edges, textures, or specific objects 

in the image [31]. Pooling layers function to reduce data dimensions and minimize overfitting by summarizing 

important information. The fully connected layer then integrates the extracted features to perform 

classification or prediction [32]. 

In the context of image classification, CNNs are very effective due to their ability to automatically 

detect disease [33]. Use of CNNs in the medical categorization of,nervous systems. This diagnosis increases 

accuracy detection, and speeds up process analysis. For example, CNN can trained with datasets big for 

automatic detection minimize optical interference [34]. Once trained, a CNN can automatically analyze new 

images and provide an accurate diagnosis [35]. 

In study this uses the method CNN because its ability to detect eye disease accurately [36]. CNN is 

often used because the algorithm is able to load the whole information with various type of scale and can 

classify pictures with more accuracy [35]. CNN has lots architecture in processing data picture which own 

amount layers which different and the level of depth is not the same for each architecture [37]. We will use 

three models, namely Inception V3, DenseNet 121, and MobileNet V2 to classify eye disease images. We 

will compare results from third model the and determine where which better in classify images of eye diseases. 

CNN have various architectures designed to handle diverse tasks in image recognition and 

classification [32]. Each CNN architecture offers specific advantages in accordance with type data and 

problem certain [38]. In context classification of disease eye using imagery fundus eye, election architecture 

which appropriate very important for reaching accuracy which high and efficient of the diagnosis process [15]. 

Three CNN architectures that are popular and proven to be effective in medical image classification are 

Inception V3, DenseNet 121, and MobileNet V2 . 

DenseNet121 was chosen in this study because it has several significant advantages. First, this 

architecture ensures robust gradient flow, which helps overcome the vanishing gradient problem that often 

arises in deep neural networks. Second, DenseNet121 offers efficient computing by connecting each layer 

directly to all previous layers, reducing the complexity of the extracted features. Additionally, this architecture 

allows smoother error signal propagation through the network, which contributes to more effective and 

efficient model training. With these advantages, DenseNet121 shows strong potential in feature extraction, 

segmentation, and object detection, making it a solid choice for various applications in image recognition and 

classification [39]. 

Inception V3 was chosen for this study because of its outstanding efficiency and performance. This 

architecture is an enhanced version of the basic framework of Inception V1, which was developed by the 

Google team and introduced in GoogLeNet in 2014. Inception V3 has a total of 42 layers, which increases 

the depth and capabilities of the network. Its main advantages include splitting into smaller convolutions, use 

of irregular convolutions via spatial factorization, incremental approximation, and effective reduction of grid 

size. This optimization produces high accuracy, precision, recall, and F-measure values, making it very 

effective for complex image classification tasks [40]. 

MobileNet V2 was chosen for this research because MobileNetV2 has a number of advantages that 

make it superior in applications on mobile devices. This architecture uses depth-wise separable convolutions 

which reduces the amount of computation significantly, making it more efficient compared to its predecessor, 

MobileNetV1. Additionally, MobileNetV2 introduces building blocks with residual connections and 

expansion and projection layers that help gradients flow through the network, improving training efficiency. 

MobileNetV2 also shows improved computational efficiency by performing only 300 million multiply-

accumulate operations (MACs) for a 224x224 RGB image, compared to 569 million MACs on MobileNetV1, 

and has almost 20% fewer parameters. This efficiency makes it ideal for mobile devices with limited memory 

access and low computing power. Model training was selected using these three architectures using the 

ADAM optimizer [41]. 

In research by Dogo et al. (2020), combining different optimizations including vanilla SGD, with 

momentum, and with Nesterov momentum, RMSProp, ADAM, ADAGrad, ADADelta, ADAMax, and 

NADAM were trained and evaluated using three benchmark image classification datasets. The research 

results show that the Adam optimizer achieves excellent performance and performance compared to several 

other algorithms [42]. Then Irfan et al. (2020) in their research on the comparison of the SGD, RMSProp, and 

ADAM optimizers in animal classification using the CNN algorithm. The research results show that the CNN 

algorithm with the ADAM optimizer produces higher accuracy when compared to the SGD and RMSprop 
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methods. The model trained using the optimal Adam function achieved 89.81% accuracy in the experiment, 

indicating the validity of the hypothesis [43]. 

In research conducted by Mohanty et al. (2023) regarding DL detecting and classifying diabetic 

retinitis using the DenseNet 121 architecture. Results from the DenseNet model 121 show accuracy 

classification excellence, ability classification which fast, so suiTable for real-time medical applications [44]. 

Research by Junayed et al. (2021) regarding an automatic cataract detection system using DL for fundus 

images. The experimental results show that with five trained CNN models, namely MobileNet, VGG-16, 

VGG-19, Inception-v3, and ResNet-50, eye disease reaches performance competitive. Accuracy which is high, 

efficiency cost And time possible doctor eyes detect disease cataracts in a way appropriate time more 

appropriate [17]. Another study by Guo et al. (2021) used the MobileNet V2, AlexNet, and Inception V3 

architectures in predicting various eye diseases using fundus photography through transfer learning. The 

results showed that the MobileNet V2 architecture was superior to other architectures with an accuracy of 

96.2%, a sensitivity of 90.4%, and a specificity of 97.6% through five trials on test data [45]. 

Based on previous research that has been described, this research only carried out one class 

classification, or what is called binary classification, and on average used a batch size of 32. Therefore, this 

research proposes the Inception V3, DenseNet 121, and MobileNet V2 architectures using 4 classes, namely 

normal, cataracts, glaucoma, and diabetic retinopathy, and used a batch size of 256. This research used a data 

sharing technique, namely Holdout Validation with a percentage of 70:30, and used the Adam optimizer. The 

objective of this research is to compare and evaluate performance from CNN architecture in eye diseases by 

using eye fundus images to find architecture that is capable of producing accuracy which high. Process 

classification data on study It was done by comparing three models namely Inception V3, Dense Net 121, and 

Mobile Net V2 with pre-trained models. Therefore, this study will use Inception V3, DenseNet 121, and 

MobileNet V2 to classify eye diseases in eye fundus images. It is hoped that by exploiting the advantages of 

each architecture, we can achieve the best performance in detecting eye diseases, thereby supporting more 

efficient screening and diagnosis processes in the medical field. 

 

2. MATERIALS AND METHODS  

The steps of this research can be seen in the methodology study which is outlined in figure 1. This 

research stage begins with a review of literature studies from scientific articles and other sources of 

information related to the topic study. Then stage collection datasets image disease eye, After the data is 

collected, it goes to the initial data processing and data sharing stage using CNN architectural modeling, 

namely the Inception V3, DenseNet 121, and MobileNet V2 classification, then goes to the evaluation stage 

of the research results that have been carried out. 

 

 

Figure 1. Research Methodology 
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2.1 Disease Eye 

Diabetic Eye Disease (DED) is a group of eye problems that affect diabetes patients. Identifying DED 

is an important activity in retinal fundus imaging because early diagnosis and treatment can ultimately 

minimize the risk of visual impairment. Retinal fundus images play an important role in the classification and 

initial identification of DED [46]. 

 

2.2 Architecture CNN 

Convolutional Neural Network (CNN) is a type of architecture network nerve imitation designed 

specifically for processing data that has a grid-like topology in images. CNN consists of several layers, 

including layer convolution which extracts features important from input via filter, layer unification which 

reduces data dimensions to reduce computational complexity, and fully connected layers that connect every 

neuron from one layer to the next to make the final decision. CNNs are very effective in tasks such as image 

recognition, face recognition, and object detection due to their ability to capture spatial patterns and feature 

hierarchies from input data [47]. At this stage, Convolutional Neural Network (CNN) used for image 

classification in eye disease was designed and implemented. Process This involve a number of step important. 

First, the election model is done by choosing the architecture CNN which in accordance, like Inception V3, 

DenseNet 121, and MobileNet V2 has proved to be effective in image classification tasks. Next, several 

convolution and pooling layers are built to extract features from the picture. Layer convolution works to detect 

feature local to picture, while the pooling layer is used to reduce feature dimensions and control overfitting 

[38]. After that, fully connected layers are added to perform classification based on the features extracted by 

the convolution and pooling layers. Finally, an output layer with softmax activation is used to classify images 

into cataract, diabetic retinopathy, glaucoma, and normal categories, generating probabilities for each 

category to enable decision making based on model predictions [48]. Figure 2 shows the convolution layer of 

CNN. 

 

 

Figure 2. Convolution Layers CNN 

 

2.3 InceptionV3 

Inception V3 is a pre-trained convolutional neural network model with 48 layers, that is capable of 

learning and recognizing complex patterns and features in medical images. One of the key features of 

Inception V3 is its ability to scale to large datasets and handle images of various sizes and resolutions. 

Inception V3 Connected Convolutional Network is applied for the early detection of eye diseases including 

diabetic retinopathy. The model classifies fundus images based on their severity. The dataset used is Eye 

Disease Classification. The design of Inception V3, consisting of several convolution stages, is depicted in 

Figure 3 [49]. 

 

 

Figure 3. Architecture CNN Inception V3 
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2.4 DenseNet121 

DenseNet is a type of CNN that enables deeper network architectures by connecting each layer to 

every other layer in a sequential manner. The DenseNet 121 model stands out for its unique connectivity 

patterns and efficient feature extraction capabilities, achieving impressive results with an average accuracy 

of 91.2%, specificity of 69%, sensitivity of 96%, and more. The architecture consists of basic convolution 

and pooling layers, dense blocks, and transition layers. It begins with a convolution block that applies a 7x7 

sliding window to the input image, producing 64 output layers. A global average pooling layer is also used to 

perform spatial pooling on the feature map, resulting in a fixed-length vector representation. The DenseNet 

121 architecture is shown in Figure 4 [39]. 

 
 

 

Figure 4. Architecture DenseNet 121 

 

2.5 MobileNet V2 

MobileNet V2 is an improvement from the previous version which uses depthwise separable 

techniques convolution (DSP), which is also known as convolution separated. The goal is to create powerful 

neural network architectures by tuning parameters [50]. Differences between MobileNet -V2 and the version 

previously including additional feature connection bottleneck and shortcut. Feature this can reduce the number 

of calculations performed by the machine compared to the original cellular network. Version 2 of mobile net 

allows input images larger than 32x32, providing better performance for larger image sizes. Because the  

mobile net is designed for mobile access, this architecture must be able to interoperate with a power computer 

which minimal, However still can give a level accuracy which high [51]. Figure 5 is the Convolution Layer 

of the MobileNet V2 architecture. 

 

 

Figure 5. Convolution Layers Architecture MobileNet V2 

 

2.6 Adam Optimizer 

Adam's Optimizer is an adaptive moment estimation algorithm that combines the advantages of 

AdaGrad and RMSProp. It adjusts the learning rate for each parameter based on the first and second moments 

of the gradient, making it efficient and effective for large datasets and non-stationary objectives. Adam is 

computationally efficient, requires less memory, and is not affected by rescaling the diagonal of the gradient. 

It is especially useful for problems with sparse gradients and noisy objectives, and its hyperparameters have 

intuitive interpretation and usually require little customization [52]. 

 

2.7 Evaluation Metrics 

To evaluate the performance of a classifier, various metrics are employed. This study utilizes a range of 

evaluation metrics, starting with the confusion matrix, which provides a numerical representation of 

classification accuracy [53]. The confusion matrix is a widely used technique in machine learning that 

compares actual class labels with predicted class labels. It consists of two dimensions: actual class and 

predicted class, with each row representing an actual class instance and each column representing a predicted 
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class state. The matrix includes four key components: true positives (TP), true negatives (TN), false positives 

(FP), and false negatives (FN). The trained model is then assessed using multiple criteria, including recall, 

accuracy, precision, and F1 score, to provide a comprehensive evaluation of its performance [54]. 

 

2.7.1 Accuracy 

This equation is used to measure the accuracy of the classifier. To calculate accuracy, divide the total 

amount of data by the amount of correctly classified data. Equation 1 is the formula for accuracy. 

 

   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                       (1)  

 

2.7.2 Precision 

 The precision metric indicates the proportion of positive data that is accurately predicted. In other 

words, high precision results in fewer false positive results. Equation 2 is the precision formula. 

 

    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
       (2) 

 

2.7.3 Recall 

The parameter used to assess the completeness of a classifier is called recall. Recall is a measure of false 

negatives; lower recall is a measure of false negatives. An increase in recall is often accompanied by a decrease 

in precision. Equation 3 is the recall formula. 

 

    𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                               (3) 

 
2.7.4 F1-Score 

 The result of multiplying recall and precision is divided by the sum of recall and precision to get the 

F1 score. Equation 4 is the F1-Score formula. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥
𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                            (4) 

 

3. RESULTS AND DISCUSSION  

3.1 Data Collection  

The first step in this study is collection of data. The dataset used in this research is a dataset of 4217 

records about diabetes mellitus obtained from Kaggle 

(https://www.kaggle.com/datasets/gunavenkatdoddi/eye-diseases-classification/code) which provides datasets 

on eye diseases. The eye_diseases_classification dataset on Kaggle is a collection of 4,217 eye images divided 

into four disease categories: cataract (1,038 images), diabetic retinopathy (1,098 images), glaucoma (1,007 

images), and normal condition (1,074 images). This dataset offers significant variation for analysis using the 

Convolutional Neural Network (CNN) algorithm in detecting eye diseases. While there is no specific 

information on lighting conditions and image quality, this dataset was collected from credible sources such as 

IDRiD, Ocular Recognition, and HRF, so it can be assumed that the quality is adequate for research purposes. 

As an open data repository, this dataset can be accessed by researchers without restrictions, supporting 

transparency and reproducibility in research on eye health. 

 

3.2 Data Preprocessing 

After data was collected, so step next is data preprocessing or process data preprocessing. The stage in 

data preprocessing carried out is augmentation by scaling the image pixel values. Then rotate the image up to 

45 degrees, and flip the image horizontally and vertically. Exposure to normalization and augmentation 

displayed in Table 1 . Data augmented is training data, while validation data and test data cannot be augmented. 

Figure 6 is the result of augmentation which has done. Figure 7 is the appearance data figure on data training. 

 

 

Figure 6. Results Augmentation 
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Figure 7. Displaying Data Training 

 

Table 1. Augmentation which Used 

Parameter Mark Explanation 

rescale  1./255 1./255 
Scales  the image pixel values from range  [0, 255] become [0, 1]. 

This helps normalize data so makes it easier model in training process 

rotation_range 45 
Randomly rotates the image up to 45 degrees clockwise or 

counterclockwise. This helps the model to be more robust to image rotation. 

horizontal_flip True 
Randomly flips images horizontally. For example, an image showing the 

left direction will be flipped to the right direction. 

vertical_flip True 
Randomly flips the image vertically. For example, an image showing the 

top will be flipped to become the bottom 

 

3.3 Data Splitting 

Based on the data collected, eye fundus data has four classes, namely normal, glaucoma, cataract, and 

diabetic_retinopathy. The amount of whole data on the fourth class is 4217 fundus images. In the deep learning 

concept, there is a division of data, namely training, test, and validation data. Data sharing uses techniques 

including cross-validation and hold-out. In this research, the data used the holdout technique with a ratio of 

70:30, namely 70% of the training data and test data ( testing ). Figure 1 is data training for every class, Table 

1 shows the amount of data for each class that has been divided using the holdout technique. The next stage is 

to set hyperparameters using the CNN algorithm and several architectures as in Table 2. 

 

Table 2. Distribution Datasets Use Technique Holdout 

Holdout Class 
80:20 

Testing Data 
Training Data Validation Data 

70:30 

Cataract 580 146 312 

Glaucoma 563 141 303 

Retinopathy Diabetic 614 154 330 

Normal 600 151 323 

 

3.4 Modeling Architecture CNN 

The data is trained using a CNN architecture and uses MobileNet V2, DenseNet 121, and Inception V3 

architectures. In the CNN model, custom layers are added to suit your needs. Table 3 is exposure to layer 

customization which added to the model. After customizing the model, then the next stage is determining the 

optimizer, callbacks and starting training using MobileNet V2, DenseNet 121and Inception V3. In Table 4, the 

hyperparameter settings used are presented. 

 

Table 3 . Layer Customization CNN 

Layer Function 

base_model It is a basic model used as an architectural basis (for example, MobileNet V2, 

DenseNet 121, or Inception V3). It works as a feature extractor 

beginning. 

GlobalAveragePooling2D() Takes the global average of each extracted feature by base_model, reduce 
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Layer Function 

dimensions data while retaining important information. 

Dense(256, activation='relu') Layer is completely connected (dense) with 256 neurons and function Activation 

ReLU, which works For study complex patterns of extracted features. 

Dropout(0.3) Dropouts layers with level dropout 30%, used to prevent overfitting by disabling 

in a way random 30% from neurons during training. 

Dense(256, activation='relu') Layer completely connected second with 256 neurons and function Activation 

ReLU, which add capacity learn a model to map features to output classes. 

Dense(4, activation='softmax') Layer output with 4 neurons and function activation 

softmax, used to classify input into wrong one from four class which desired. 
 

Table 4. Arrangement Hyperparameters 

Name Parameter Arrangement Parameter Mark 

Adam Learning Rate 0.0001 

Early Stopping Patience 10 

Model Checkpoints 
Save_best_only, True 

Save_weights_only True 

ReduceLROnPlateau 

Factor 0.3 

Patience 4 

Min_lr 0.00001 

Batches size 256 

Epoch 50 

 

3.5 Evaluation 

The trained model is then evaluated using the Classification Report, Confusion Matrix, and ROC Curve. 

Classification Report is presented in Tables 5, 6, and 7. Table 5 shows the results of the classification report 

using the MobileNet V2 architecture. The results of the classification report by the Inception V3 architecture 

are presented in Table 6 and the DenseNet 121 architecture in Table 7. In Table 5 using MobileNet V2 shows 

very good performance in the Cataract class which has recall, precision, f1-score and support as big as 0.85577, 

0.94014, 0.89597, and 312 with accuracy 0.81309 occupy accuracy highest compared to other architectures. 

Likewise Table 6 using Inception V3 for normal class classification shows very good performance with recall, 

precision, f1-score and support values, namely 0.84615, 0.85993, 0.86076 and 312 with an accuracy of 

0.77366. The model in Table 7 also trains the normal class well with recall, precision, f1-score and support 

values of 0.88782, 0.87658, 0.88217 and 312 with an accuracy of 0.76735. The best accuracy is 0.81309 by 

MobileNet V2 architecture. 

 

Table 5. Classification Reports Architecture MobileNet V2 

Name Class Recall Precision F1-Score Support 

Cataract 0.85577 0.94014 0.89597 312 

Diabetic Retinopathy 0.76667 0.92674 0.83914 330 

Glaucoma 0.68317 0.86250 0.76243 303 

Normal 0.94118 0.64544 0.76574 323 

Accuracy   0.81309 1268 

  

Table 6. Classification Reports Architecture Inception V3 

Name Class Recall Precision F1-Score Support 

Cataract 0.84615 0.85993 0.86076 312 

Diabetic Retinopathy 0.78182 0.82958 0.76661 330 

Glaucoma 0.73927 0.70886 0.64336 303 

Normal 0.72755 0.70359 0.69799 323 

Accuracy   0.77366 1268 

  

Table 7. Classification Reports Architecture DenseNet 121 

Name Class Recall Precision F1-Score Support 

Cataract 0.88782 0.87658 0.88217 312 

Diabetic Retinopathy 0.73939 0.88406 0.80528 330 

Glaucoma 0.64356 0.75000 0.69272 303 

Normal 0.79567 0.61779 0.69553 323 

Accuracy   0.76735 1268 

 

An analysis of model errors or failures, such as those caused by blurry, noisy, or poorly lit images, could 

enhance the evaluation by providing insights into the model's limitations and potential areas for improvement. 
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Discussing challenging cases or examples of misclassification would add significant value to the study. As 

shown in figure 8, a Confusion Matrix was used to evaluate the MobileNet V2 model's performance on a testing 

dataset of 1,268 images. Out of these, 1,008 images were correctly classified, while 260 were misclassified. 

Incorporating an analysis of these errors, particularly under challenging conditions, could provide deeper 

insights into the model's robustness and areas where enhancements are needed. 

Figure 9 is the Confusion Matrix from Inception V3. The results of the confusion matrix from 

Inception V3 explain the amount of testing data that is proven correct as much as 981 data, and as much as 

287 testing data is still detected incorrectly during classification. Based on figure 10 is a confusion matrix 

from DenseNet 121 which shows that 941 testing data were correctly detected and 327 data were still 

incorrectly detected. So the best Confusion Matrix is obtained by the MobileNet V2 architecture.  

  

 

Figure 8. Confusion Matrix MobileNet V2 

 

 

Figure 9 . Confusion Matrix Inception V3 

 

 

Figure 10. Confusion Matrix DenseNet 121 
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The model for the eye fundus dataset was trained with 70% of the data and tested with 30%. The training 

process spanned 50 epochs. Figures 11, 12, and 13 depict the training and validation curves for the MobileNet 

V2, Inception V3, and DenseNet 121 architectures, respectively. These figures illustrate the relationship 

between accuracy, loss, and the number of epochs. Accuracy shows a positive correlation with more epochs, 

while loss shows a negative correlation, decreasing as epochs increase. Among the architectures, MobileNet 

V2 performed the best, with training and validation accuracies around 83% and 80%, and losses around 0.4 

and 0.5, indicating sTable and superior performance.  

Figure 11 shows the training and validation accuracy curves, indicating that the MobileNet V2 

architecture model achieves a training accuracy of about 83% and a validation accuracy of about 80%. The 

model shows good performance, with training and validation accuracy consistently increasing over time. The 

loss training and validation curves show that the model achieves a training loss of about 0.4 and a validation 

loss of about 0.5. The training and validation losses consistently decreased over time, indicating that the model 

learned well and generalized well to the validation data. 

 

 

Figure 11. Curve Accuracy and Loss MobileNet V2. 

 

The graph in figure 12 shows that the Inception V3 architecture model achieved a training accuracy of 

about 79% and a validation accuracy of about 75% after 18 epochs. The graph also shows that the training loss 

decreased to about 0.55, while the validation loss decreased to about 0.62. This shows that the model learned 

the training data well, but experienced slight overfitting, as the validation loss was higher than the training loss. 

Overfitting can occur when the model learns the training data too well and becomes too specific to the training 

data, so it cannot generalize well to new data. 

 

 
Figure 12. Curve Accuracy and Loss Inception V3 

 

The graph in figure 13 shows that the DenseNet 121 architecture model achieves high training and 

validation accuracy, with training accuracy peaking at around 0.78 and validation accuracy peaking at around 

0.75. This shows that the model learns well and is able to generalize to data that it has never seen before. The 

loss graph shows that the training and validation loss drops significantly during training, reaching around 0.6 

for training loss and around 0.7 for validation loss. This shows that the model becomes better at predicting the 

correct output as training progresses. Although there is a slight difference between the training and validation 

accuracy, and the training and validation loss, it shows that the model is not overfit and can generalize well to 

new data. 

The Receiver Operating Characteristic (ROC) curve is a probability curve that measures the area under 

the curve using Area Under the Curve (AUC). The maximum value of AUC is 1, which has the most perfect 

classification. The best AUC value among the three architectures is MobileNet V2 with an average AUC of 

0.9594. 
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Figure 13. Curve Accuracy and Loss DenseNet 121. 

 

The AUC-ROC curve in figure 14 shows that the MobileNet V2 architecture achieves an AUC value 

above 0.93 for each eye fundus disease class, with the following details: AUC for cataract is 0.9857, diabetic 

retinopathy 0.9728, glaucoma 0.9431, and normal condition 0.9360. The average AUC-ROC value of 0.93 

indicates that MobileNet V2 has an almost perfect classification ability in detecting various types of eye 

diseases. However, adding a discussion of more challenging image conditions or examples of classification 

failures can add significant value. It is important to understand the limitations of the model and the situations 

where classification accuracy can be affected, so that further improvements and developments can be made in 

future research. 
 

 

Figure 14. Curve AUC-ROC MobileNet V2 

 

Then in figure 15 using the Inception V3 architecture achieves an AUC value above 0.91 in each class. 

The AUC value in each class, including AUC cataract = 0.9804, AUC diabetic_retinopathy = 0.9637, AUC 

glaucoma = 0.9402 and AUC normal = 0.9101 value in each class and the average AUC-ROC in Figure 15 

worth 0.91 can be concluded that Inception V3 has a near perfect classification. The third architecture, DenseNet 

121 in figure 16, has an AUC value above 0.88. The AUC value in each class, including AUC cataract = 0.9804, AUC 

diabetic_retinopathy = 0.9447, AUC glaucoma = 0.8923 and AUC normal = 0.8844 value in each class and the 

average AUC-ROC in Figure 15 is 0.88, it can be concluded that Inception V3 has a good classification. 

 

 

Figure 15. Curve AUC-ROC Inception V3 
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Figure 16. Curve AUC-ROC DenseNet 121 

 

The accuracy results of the experiment are shown in figure 17. Figure 17 shows that the experiment 

using the MobileNet V2 architecture produced the highest accuracy value of 81.3%. On position accuracy best 

second achieved by architecture Inception V3 as big as 77.3%. DenseNet 121 is at position lowest with accuracy 

as big as 76.7%. Figure 18 shows the successful architecture MobileNet V2 in that predicted class on fundus 

eye. Figure 18 chosen is a class cataract. Results the test shows the cataract class as the prediction result with 

the highest probability of 0.775954. 

 

 

Figure 17. Diagram Comparison Architecture 

 

 

Figure 18. Test Try Image 

 

Given the growing use of deep learning in medical diagnostics, including eye disease classification, real-

world implementation faces several challenges that need to be considered. Larger models such as Inception V3 
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and DenseNet 121 offer impressive accuracy but come with significant computational requirements, making them 

less suiTable for real-time applications or use in resource-limited settings. These models demand powerful 

hardware, high memory capacity, and longer processing times, which can be impractical for quick diagnostics in 

clinical environments or on porTable devices. In contrast, lighter models like MobileNet V2, which utilize 

depthwise separable convolutions, offer a more efficient alternative by significantly reducing the computational 

load while maintaining competitive accuracy. This trade-off between computational cost and model performance 

is particularly important for medical applications where quick, real-time processing is essential, especially in 

mobile or remote diagnostic settings. Understanding these practical limitations and the hardware capabilities 

required to run such models is crucial when selecting an appropriate architecture for real-world use in medical 

fields, ensuring that the model can perform efficiently without compromising on diagnostic speed or accuracy. 

  

4. CONCLUSION  

The conclusion of this research shows that the MobileNet V2 architecture has the best performance in 

eye disease image classification with the highest accuracy of 81.3%, followed by Inception V3 with 77.3% 

accuracy, and DenseNet 121 with 76.7% accuracy. MobileNet V2 also shows the best performance in detecting 

cataract classes with the lowest detection error rate. Increasing the number of epochs has proven to be effective 

in increasing accuracy and reducing loss values in the model. The preprocessing process which includes image 

normalization and data augmentation such as image rotation and flipping also plays an important role in 

improving model robustness. Overall, this study shows that MobileNet V2 is superior in eye disease 

classification in fundus images compared to other architectures. 

For future research, algorithms such as EfficientNet, ResNet, and Vision Transformers (ViT) are 

recommended. EfficientNet offers high efficiency and accuracy by utilizing optimal scaling techniques, 

making it ideal in clinical environments with limited resources. ResNet is known for its residual architecture 

that can overcome the problem of vanishing gradients, crucial for the classification of complex medical images. 

Meanwhile, Vision Transformers (ViT) utilizes the attention mechanism to capture spatial relationships in 

medical images, which can improve the detection of important features that may be missed by traditional CNN 

architectures. The combination of these algorithms can improve the early detection of eye diseases and support 

more efficient and accurate diagnosis. In addition to the algorithms mentioned, future research could 

incorporate CLAHE and ESRGAN for image enhancement. CLAHE improves local contrast and enhances the 

visibility of retinal features, which is crucial for precise diagnosis. ESRGAN, an advanced generative 

adversarial network, further refines image resolution and detail, enhancing the model's ability to detect subtle 

abnormalities. This combination can significantly improve the quality of input images, leading to more accurate 

and reliable classification of eye diseases, ultimately supporting early detection and better patient outcomes. 
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