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Abstract

Effective communication is a fundamental human need; however, for people with hearing impairments in Indonesia,
interaction relies heavily on the Indonesian Sign Language System (Sistem Isyarat Bahasa Indonesia — SIBI). Although
deep learning has been widely applied in sign language recognition, comprehensive comparative studies focusing
specifically on SIBI remain limited, particularly in evaluating the performance gap between different neural network
architectures. This study addresses this gap by comparing the effectiveness of Convolutional Neural Networks (CNN)
and Recurrent Neural Networks (RNN) in classifying SIBI hand gesture images. An augmented SIBI dataset was trained
using the Adam optimizer to improve generalization and recognition performance. The experimental results reveal a
significant performance difference between the two models, where CNN achieved a precision, recall, and F1-score of
94%, while RNN obtained a precision of 76% recall of 74%, and F1-score of 73%. These findings demonstrate that CNN
is substantially more effective for image-based SIBI recognition because it extracts spatial features more effectively than
the sequential processing mechanism of RNN. This research contributes empirical evidence for selecting appropriate
deep learning architectures in SIBI recognition systems and offers practical implications for developing more accurate
and reliable assistive communication technologies in educational and accessibility contexts.
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1. INTRODUCTION

Communication is one of the fundamental aspects of human life, serving as a medium to convey
information, ideas, and emotions [1]. For most people, verbal communication is the primary means of
interaction. However, for individuals with hearing and speech impairments, limitations in hearing and
speaking abilities necessitate alternative communication methods, one of which is sign language [2].
According to data from the World Federation of the Deaf (WFD), around 70 million individuals worldwide
use sign language as their main form of communication [3].

In Indonesia, two primary forms of sign language are used, namely Sistem Isyarat Bahasa Indonesia
(SIBI) and Bahasa Isyarat Indonesia (BISINDO) [4][5]. SIBI is formally structured to follow the grammatical
rules of the Indonesian language and is widely used in educational and official institutional settings [2][6]. In
contrast, BISINDO has developed naturally within the deaf community and does not adhere strictly to
Indonesian grammatical structures [7]. The use of sign language is essential in enabling deaf individuals to
engage fully in various areas of life, including education, social interaction, and employment [8][9].
However, the continued reliance on SIBI in formal contexts faces challenges due to limited public
understanding and technological support, which often hinders effective communication between deaf
individuals and the surrounding community [10].

Various efforts have been made to bridge this communication gap, particularly through technological
innovation [11][12]. With the rapid development of information technology, artificial intelligence (Al)-based
approaches have increasingly been applied to automatically detect and translate sign language [13]. Research
in sign language recognition, including SIBI, has expanded by leveraging deep learning algorithms such as
Convolutional Neural Networks (CNN), Artificial Neural Networks (ANN), and Recurrent Neural Networks
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(RNN) [3][13][14]. Nevertheless, comprehensive studies that directly and systematically compare the
performance of CNN and RNN specifically for SIBI recognition remain limited, leaving uncertainty
regarding the most suitable architecture for this task.

Previous studies have reported promising results in deep learning-based sign language recognition.
Utilizing five-fold cross-validation, one study developed a CNN-LSTM model with an attention mechanism,
achieving an average accuracy of 84.65%, precision of 86.8%, recall of 87.4%, and F1-score of 84.4% [15].
Another study employed a ResNet-LSTM architecture on the Argentine Sign Language video dataset
(LSA64), achieving an accuracy of 86.25%, precision of 87.77%, and F1-score of 84.98% under a holdout
validation scheme (80% training, 20% validation), demonstrating balanced performance and minimal
overfitting [16]. Other studies have reported near-perfect accuracy in recognizing alphabet and number
gestures, including a CNN with Self-Attention LSTM achieving 98.7% accuracy [17] and a VGG16-based
model for Indian Sign Language reaching 99.8% accuracy [18]. Metaheuristic optimization has also shown
strong performance, such as the MobileNet-LSTM model combined with Manta Ray Foraging Optimization
and Reptile Search Optimization, achieving 99.51% accuracy for American Sign Language recognition [19].

Based on these findings, this study aims to systematically compare the performance of CNN and RNN
architectures for SIBI gesture recognition using an image-based dataset. The novelty of this research lies in
its focused evaluation of deep learning architectures specifically for SIBI, an area that remains relatively
underexplored compared to other sign languages. By identifying the most accurate and efficient model for
SIBI recognition, this study is expected to contribute to the development of more reliable sign language
translation systems and support inclusive communication for the deaf community in Indonesia.

2. MATERIAL
2.1. Deep Learning

Deep learning refers to a field within machine learning that leverages layered neural networks to
autonomously identify and learn data patterns. Algorithms such as CNN for image processing, RNN for
sequential data, and Transformers for NLP have seen rapid development across various domains, including
facial recognition and language understanding. Emerging approaches such as transfer learning, federated
learning, and self-supervised learning now enable model training with limited data and under more efficient
conditions. Nevertheless, significant challenges remain, including high computational demands, issues of
interpretability, and the risk of algorithmic bias [20][21][22].

2.2.  Convolutional Neural Network

CNN is a deep learning algorithm specifically designed to process spatial data such as images and
videos [24]. CNN operates by extracting local features through convolutional operations, followed by
activation functions and downsampling techniques such as max pooling. Each convolutional layer enables the
network to understand visual representations hierarchically, from simple edges to more complex patterns
[21]. Training a CNN model generally involves two key stages: feature extraction and classification. During
the feature extraction stage, convolutional layers combined with max pooling are used to reduce the spatial
dimensions of the input image. The convolution process can be described by the following formula 1.

N(w,n) = [%Zp—k] +1 (1)

After obtaining the image dimensions from the convolutional layer, the next step in the CNN process
is feature learning through the max pooling layer [23]. The formula for the max pooling operation is
presented formula 2.

n = Qenal) 4y @)

Once the width and height values are derived from the max pooling layer, the layer dimensions are
expressed as wn x hn x dn, where wn represents the width, 4n the height, and dn the number of filters in the
n-th layer. After the training process is complete, the model's performance is assessed using accuracy,
precision, and recall, which are calculated based on the confusion matrix. The formulas for these evaluation
metrics are outlined in equations 1-3.

TP+TN
Accuracy = (m) X 100% (3)
Recall = (——) x 100% )
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2.3.  Recurrent Neural Network

RNN is a neural network architecture designed to process sequential data by retaining the context of
previous inputs through a looping mechanism [24]. This characteristic makes RNN well-suited for
applications like natural language processing, time series forecasting, and the analysis of spatio-temporal
signals [25]. However, vanishing gradients are a common issue with classic RNNs, which makes it difficult
for them to learn and sustain long-term dependence. To address this issue, variants such LSTM and GRU
have been developed, incorporating internal gating mechanisms to retain information over longer periods
[26]. As illustrated in Figure 1, a recurrent neural network (RNN) conventionally computes the hidden state
by integrating the current input with the preceding hidden state.

Output layer

Hidden layer

input layer

Figure 1. RNN Architecture

2.4. ResNet50Vv2

ResNet50V2 is an advanced version of ResNet50, designed to address the accuracy degradation
commonly observed in deeper neural networks. In contrast to the post-activation architecture of the original
ResNet50, ResNet50V2 employs a pre-activation residual block, wherein batch normalization and RelLU
activation are performed before the convolutional layers [27]. This architecture consists of 50 layers
organized into bottleneck blocks, each containing 1x1, 3x3, and 1x1 convolutions. This approach facilitates
the optimization of deep networks without sacrificing accuracy [28].

In image classification tasks, ResNet50V2 performs competitively with other CNN-based algorithms.
Studies involving medical images have shown its capability to detect subtle features, thanks to residual
pathways that preserve cross-layer information through identity mapping. The strengths of ResNet50V2 are
also evident in its generalization across various domains, such as object recognition, satellite imagery, and
video analysis, making it a preferred choice in numerous visual learning applications [29].

2.5, Adam

Adam is an optimizer that combines the advantages of both AdaGrad and RMSProp methods [30].
During the training process, it computes adaptive learning rates for each parameter by utilizing the
exponential moving average of the squared gradients (second moment) alongside the exponential moving
average of the preceding gradients (first moment) [31].

Adam has demonstrated high performance, achieving an accuracy of 97.66% and a minimum loss of
7.10%. This algorithm also avoids local minima and achieves strong generalization performance. Although
its computation time may be slightly longer compared to methods such as SGD with Momentum, Adam
remains more optimal in producing predictions with minimal error rates [31].

The strength of Adam lies in its ability to accelerate convergence, automatically adapt to parameter
changes, and efficiently handle parameters with varying scales. With these advantages, Adam is
recommended as an effective optimizer for training deep learning algorithms, especially on large and
complex datasets. Its ability to balance speed, accuracy, and stability makes it one of the most widely used
optimization algorithms in deep learning development [31][34].

2.6. Sistem Isyarat Bahasa Indonesia

SIBI is a communication system used by the deaf community in Indonesia, which combines elements
of Indonesian Sign Language (BISINDO) with a grammatical structure that more closely resembles spoken
Indonesian. SIBI relies on hand movements, facial expressions, and body positioning to convey words or
sentences. Hand movements represent words or concepts, facial expressions provide additional meaning, and
body positioning clarifies the intent of the signs. SIBI also includes a list of commonly used words or
phrases, although not all Indonesian words have a direct equivalent in sign language. Therefore, the use of
SIBI requires contextual and cultural adaptation [2]. Examples of SIBI hand gestures can be seen in Figure 2.
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Figure 2. Sistem Isyarat Bahasa Indonesia

2.7. Literature Review

Previous studies have shown promising results in deep learning-based sign language recognition. One
study developed a CNN-LSTM model with an attention mechanism using five-fold cross-validation,
achieving an average accuracy of 84.65%, precision of 86.8%, recall of 87.4%, and F1-score of 84.4% [15].
This study emphasized the combination of CNN for spatial feature extraction and LSTM for sequential
modeling, with the attention mechanism enhancing the model’s focus on relevant regions of the images.
However, its application was limited to specific datasets and has not yet been tested for Indonesian Sign
Language (SIBI).

Another study employed a ResNet-LSTM architecture on the Argentine Sign Language (LSA64)
video dataset, using a holdout validation scheme (80% training, 20% validation). The model achieved
accuracy of 86.25%, precision of 87.77%, and F1-score of 84.98% [16], demonstrating balanced performance
and minimal overfitting. Nevertheless, this study focused on video data, making direct comparison with static
image-based datasets, such as SIBI, limited.

Some other studies have reported near-perfect accuracy in recognizing alphabet and number gestures.
For example, a CNN with Self-Attention LSTM achieved 98.7% accuracy [17], while a VGG16-based model
for Indian Sign Language reached 99.8% accuracy [18]. These studies highlight the potential of CNN
combined with attention mechanisms in recognizing complex gesture patterns. However, most were applied
to limited datasets under control experimental conditions, limiting generalizability to other sign languages.

Additionally, metaheuristic optimization approaches have shown strong performance. The
MobileNet-LSTM model combined with Manta Ray Foraging Optimization and Reptile Search Optimization
achieved 99.51% accuracy for American Sign Language letter recognition [19]. This emphasizes the
importance of parameter optimization to improve performance on datasets with high gesture variability,
though the increased computational complexity can hinder real-time deployment.

3. METHODOLOGY

This study employed an experimental method with four main stages: (1) Collecting Data, (2)
Preprocessing, (3) Training the Algorithm using two models, CNN and RNN, and (4) Evaluation, in which
the training results of both algorithms were assessed to measure their performance. Figure 3 illustrates the
research methodology.

3.1. Collecting Data

The dataset used in this study was obtained from Kaggle, consisting of 5,500 images categorized into
25 classes, with approximately 220 images per class. Each image represents a distinct SIBI hand gesture,
forming the basis for training and evaluating the deep learning models.

3.2.  Preprocessing

During preprocessing, all images were resized to 224 x 224 pixels to ensure uniformity in input
dimensions. Standard data augmentation techniques were applied to enhance model generalization, including
rotation (up to 20°), zooming, shearing, translation, and horizontal flipping. These steps help increase dataset
variability and prevent overfitting during training.
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3.3.  Training Algorithm

Two deep learning algorithms were implemented: Convolutional Neural Network (CNN) and
Recurrent Neural Network (RNN). Both models were trained using the Adam optimizer, which adaptively
adjusts learning rates for faster convergence and improved performance.

3.4. Evaluation

Model performance was evaluated using several metrics, including precision, recall, F1-score, training
and validation accuracy, training and validation loss, and confusion matrices. These metrics provide a
comprehensive assessment of classification effectiveness and allow comparison between CNN and RNN

architectures.

Collecting Data

l

Preprocessing

l

Training Algorithm

Conventional Neural Recurrent Neural
Network (CNN) Network (RNN)

h 4

Evaluation

Figure 3. Research Methodology

4, RESULTS AND DISCUSSION

This study began with the collection of image data representing the Indonesian Sign System, followed
by preprocessing steps such as resizing and normalization. The data were then trained using CNN and RNN
algorithms to compare their performance in recognizing sign language gestures.

4.1. Collecting Data

The hand gesture image data representing the Indonesian Sign System (SIBI) used in this study were
obtained from the Kaggle platform and are credited to [32]. The dataset includes 25 classes, representing the
alphabet letters from A to Y, with each class consisting of 220 images, resulting in a total of 5,500 images
used in this study. A visual example of the image data for each class is shown in Figure 4.

b
E

Figure 4. SIBI Dataset Visualization
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4.2.  Preprocessing

During the data preprocessing stage, each image was uniformly scaled and resized to dimensions of
224 x 224 pixels. As depicted in Figure 5, data augmentation techniques ncluding rotation up to 20 degrees,
zooming, shearing, translation, and horizontal flipping were applied to the dataset utilized in this study.

Figure 5. Augmented Result

4.3. Training Data

Split Data

l

Augmentation

l

Training Algorithm

Conventional Neural Recurrent Neural
Network (CNN) Network (RNN)

h 4

Evaluation Confusion
Matrix

Figure 6. Training Data

The training data were split using the Hold-Out technique. After this split, data augmentation was
applied to the training set to increase image variability and minimize the risk of overfitting. The
augmentation techniques used included pixel value normalization to the range 0-1, random rotation up to 20
degrees, 10% zoom, 10% horizontal and vertical shifts, and a 5% shear transformation. Images were also
horizontally flipped, especially when hand gestures were symmetrical, while vertical flipping was avoided to
preserve gesture meaning. To fill empty regions resulting from transformations, the “nearest” fill mode was
applied. Meanwhile, the validation and test data were normalized but not augmented to maintain a
representative evaluation of the algorithm on real-world data.

After data augmentation, the CNN model was trained using a pre-trained base to extract spatial
features, followed by layers designed to reduce overfitting and perform multi-class classification. The model
was optimized with the Adam optimizer to speed up training. The RNN-based model utilized a hybrid
architecture combining convolutional and recurrent layers to capture both spatial and sequential patterns.
Spatial features were extracted and then transformed into sequences, which were processed by recurrent
layers before classification. Dropout was applied to minimize overfitting, and the model was also optimized
using the Adam optimizer. This hybrid approach takes advantage of the RNN’s ability to model sequential
dependencies within spatial data. The training results for each architecture, using the same optimizer, are
presented in Table 1.
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Table 1. Training Result

Algorthm Precision Recall F1-Score
CNN 0.94 0.94 0.94
RNN 0.76 0.74 0.73

The training performance of both deep learning architectures using the same optimizer is summarized
in Table I. The results show that the CNN model achieved consistently superior performance, with Precision,
Recall, and F1-Score values of 0.94, indicating excellent and well-balanced classification capability. The
high precision demonstrates that the CNN model produced very few false positive predictions, while the high
recall reflects its strong ability to correctly identify relevant gesture images. The resulting F1-Score further
confirms the robustness of the model and its effectiveness in generalizing the training data. In contrast, the
RNN model obtained lower performance values, with a Precision of 0.76, Recall of 0.74, and F1-Score of
0.73. This performance gap suggests that RNN is less effective for image-based gesture recognition, likely
due to its sequential processing mechanism, which is less capable of capturing complex spatial patterns
compared to the convolutional structure of CNN. For a more comprehensive understanding of the training
behavior, the learning curves illustrating accuracy and loss during the training process are presented in
Figures 7 and 8.

Training and Validation Accuracy Training and Validation Loss

—— Training Los5

— validation Loss

Accuracy

—— Training Accuracy
— Validation Accuracy

[1] 2 4 ] 8 10 12 14 1] 2 4 6 B 10 12 14
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Figure 7. Training and Validation Accuracy CNN
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Figure 8. Training and Validation Accuracy RNN

The performance of the CNN and RNN algorithms can be compared through the accuracy and loss
trends observed over the training epochs. The CNN algorithm shows a rapid and stable increase in accuracy,
with validation accuracy surpassing training accuracy, indicating good generalization and no signs of
overfitting. Its loss steadily decreases and remains low by the end of training. In contrast, the RNN algorithm
exhibits slower accuracy improvement and maintains higher loss values throughout the epochs, suggesting
less efficient learning of data patterns. To provide a clearer illustration of the classification performance of
both algorithms, Figure 9 and 10 present the confusion matrices of the CNN and RNN algorithms,
respectively.

The confusion matrices for the CNN and RNN algorithms indicate that the CNN outperforms the
RNN in classification accuracy. CNNs can classify most letters with high accuracy, as indicated by the
dominance of 21 or 22 along the diagonal of the confusion matrix, reflecting near-perfect predictions across
most classes. In contrast, while the RNN algorithm also correctly predicts some classes, there are more
misclassifications (higher off-diagonal values), indicating lower accuracy and more dispersed predictions.

Overall, the CNN algorithm exhibits stronger and more stable training results compared to the RNN
algorithm, as depicted in Figure 11. The data illustrate that CNN consistently surpasses RNN across key
evaluation metrics, indicating its superior overall effectiveness.

Comparison of Convolutional Neural Network and... (Harmade et al, 2026) 95



Confusion Matrix

ISSN(P): 3024-921X | ISSN(E): 3024-8043

=z =
o [r:} o 0 o Z =
=1 r=) =1 0 o 5 - 5 J 5 n Q n =]
o = ol S w < 5 =l 8 5 a o E ~ I o =] U
S T I
B i g
L
o a
= cooooocoocorMo0oooo0oco0oo0co00 oo o> = —
cocoo oo oo o =) o o o > o = w
= cocoooocood-docO0O0O0OrdOoO0O0O0O0 00O~ X 4 a
ocooo oo oo o — — oo x C..._ =]
~
P EEeEEEEEEeE e & = Bl o = > cooococoococorMooco0o0oocoo0oniMoo =2 = H
- '2}
e OO O o —_—o o > > cocoocoococoococomooooooocooofaoco > zZ p
)
oo ec e aa e cBloco o o ) coooococococorMoocoO0OCcOorROOA-O O D o ﬁ
-
oo cND e e S (o co - o - ™ CcooO0OO0OOCOCOmMOOCOOCOOOOCOOCOMOoOOO®mOo x "~
coococnoo =) o= o Blc cocoown .m cooococococorMooconocoocofnooco~on0 ..w T
ccocoococoo oo ceoo ccoocococo - © coooococo-mrrMoococooRMoos0oO00O0O X M ﬂ
ccoococoococoocOoOOCGC coococoocoo M coocoooocoocoococoocoocoflfloocooooco o O p o =
= ]
oocoo oo oo o cNcocoococooocooa _ m Am000000000000001200000201PI o m %}
@ = - —
ocooo oo oo =] jJc °ccooooooo0 00Xl D W0010000000000.1,00000000100.@ wn i o M
3 = B
“coordoocoococoocomnpocococoococococozg ..w C C00 00000000 ONOODOOOHOOOOO Z 4 ..m K M
= 5} =] 7}
crocococcoocofneccocococoocococoo =3 c B NOOO-NOO-OO O0O0OO0O-HO0OO0OO0OO0O0OSGg m a
=1 o =]
cocooccooocococfJococococococooonocoo dg O .MDDDDOOAODD DDOOODDDDIODSLM (@] =
o o
o oo o o o o oOoocoocococoocoNOoOOX . %000000000 0O 00000000 N~OCN X O- %
DEpEEEC flcocococcocococoonNooo - w cCoo0o0oO00O -~ Cooo0o0O0OO0OCONHOOO N — — £
Sl oicic Cifg EEEEEEREEREEEE By — cooocoocoH cocoocoocoo0O0O0O0OO0OOCOOOTI n_ru .m
=
codoocoflococococooocococococoococoocoo® WJ cooNoo "mococoCcocoOOOCOCOOOOCOOCOOOCOOV =] .m
— (@] — c
Sl =) (SR DEHIIEEEEEEER2E0 2206 B iL crNoocoocfBfloomocooocoocoorooMoocoo L _|H [} S
coolNoooooooooooOoOOoOoOOooOoOoooOd - a [
cofflececccocooococcocccococococcoouw 50 Slolo o =]
= HOOCOO0OO00O0O0O0OO0O0OO0O0O0O0 O ]
cEjococoo0oo0c 000000000000 CO0O0O0 OO o coMoocococOoCOoOHMHOOOOOCONOOCS O M
100000000000000000000000A coccorocooccoc0oONNOOOOO <
vE8o ad3I4d9HINTWNOIDHEYS L NAMXA
jaqe aniL VE80AQ3I4dOHINTANODOYES L NAMX A <
|13qen aniL —

21025

96

Figure 11. Comparison of CNN and RNN Algorithms
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4.4. Discussion

The experimental results demonstrate a clear and significant performance advantage of CNN over
RNN for image-based SIBI gesture recognition, where CNN achieved an average of 94% in precision, recall,
and F1-score, while RNN produced consistently lower values. This performance gap can be explained by the
fundamental architectural differences between the two models. CNN is specifically designed to extract spatial
features from images through convolutional operations, enabling it to effectively capture hand shape,
orientation, and local visual patterns that are critical for gesture recognition. In contrast, RNN is optimized
for sequential data and temporal dependencies, making it less suitable for static image classification, where
spatial relationships dominate the feature representation. These findings are consistent with previous deep
learning theories that emphasize the superiority of convolution-based models for visual pattern recognition
tasks.

When compared with previous studies, this research reveals both alignment and important
distinctions. A CNN-LSTM model with attention achieved an accuracy of 84.65% and an F1-score of 84.4%
using a five-fold cross-validation scheme [15], while a ResNet-LSTM architecture on the LSA64 dataset
reported an accuracy of 86.25% and an F1-score of 84.98% [16]. Although these hybrid models integrate
temporal modeling and attention mechanisms, their performance remains notably lower than the 94% average
F1-score obtained in this study using pure CNN architecture on SIBI image data. Furthermore, studies
employing complex architectures such as CNN with Self-Attention LSTM and VGG16 with attention have
reported near-perfect accuracy of 98.7% [17] and 99.8% [18], respectively; however, these studies focus
primarily on alphabet and number recognition in other sign languages under more constrained conditions,
making direct comparison difficult. The present study provides novel empirical evidence by directly and
systematically comparing CNNs and RNNs specifically for SIBI, an area that remains relatively
underexplored.

The implications of these findings are significant for the development of SIBI recognition systems, as
they highlight the importance of selecting architectures that align with data characteristics. The strengths of
this study include its focused evaluation on SIBI, consistent training conditions for both models, and the clear
demonstration of architectural impact on performance. Nevertheless, the study is limited using static image
data and the evaluation of only two model architectures, which may not fully represent real-world usage
scenarios. These limitations suggest promising directions for future research, including integrating temporal
information from video data, exploring hybrid CNN-LSTM maodels, incorporating attention mechanisms, and
implementing real-time recognition systems for practical deployment.

4, CONCLUSION

This study evaluated the performance of CNN and RNN for classifying hand gestures in the
Indonesian Sign Language System (SIBI) and found that CNN significantly outperforms RNN, achieving an
average of 94% in precision, recall, and F1-score, while RNN showed lower precision and recall. These
results confirm that CNN is more suitable for image-based SIBI recognition due to its superior spatial feature
extraction capability. The main contribution of this research is the direct and systematic comparison of CNN
and RNN for SIBI recognition, an area that remains relatively underexplored. The findings are important for
developing more accurate and reliable SIBI recognition systems to support assistive communication
technologies. However, this study is limited by the use of static image data and the evaluation of only two
model architectures. Future work should consider video-based data, hybrid CNN-LSTM models, attention
mechanisms, and real-time system implementation.
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