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Abstract

Breast cancer ranks among the primary contributors to female mortality, thereby underscoring the critical importance of
early detection. This research employs a deep learning approach based on Convolutional Neural Networks (CNNs) to
classify breast cancer using ultrasound imagery, comparing the ResNet50V2 and MobileNetV2 architectures with three
optimizers: Adam, RMSprop, and SGDM. The dataset used in this study is the Breast Ultrasound Images (BUSI) dataset,
obtained from Kaggle, which comprises three diagnostic categories: benign, malignant, and normal. The research
workflow encompassed several stages, including data acquisition, image pre-processing involving normalization and
augmentation, and dataset partitioning using the Holdout Split method, with proportions of 70% for training, 15% for
validation, and 15% for testing. The experimental findings revealed that the ResNet50V2 architecture combined with the
SGDM optimizer achieved the best performance, recording accuracy, precision, recall, and F1-score values of 92%.
Meanwhile, MobileNetV2 with RMSprop achieved the highest performance on its architecture with 86% accuracy, 88%
precision, 86% recall, and 86% F1-score. These findings prove that CNN architecture selection and optimization
algorithms have a significant influence on medical image classification performance.
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1. INTRODUCTION

Breast cancer continues to rank among the primary causes of mortality in the female population
worldwide, establishing it as a significant global health concern [1]. Accurate and early diagnosis of breast
tumors significantly contributes to improving patient prognosis by increasing the chances of recovery and
minimizing mortality rates [2]. However, breast cancer diagnosis remains challenging due to ultrasound
image quality issues, speckle noise, and dependence on radiologist expertise [1], [3]. Based on data from the
World Health Organization (WHO), around 2.3 million new breast cancer cases and 670,000 deaths were
recorded globally by 2022 [4]. Thus, fast and accurate diagnosis is vital for appropriate treatment selection
and reducing healthcare burdens. To address this, CAD (computer-aided diagnosis) systems with deep
learning have been introduced to improve breast tumor classification accuracy [5], [6].

Breast ultrasound images (BUSI) are widely used for breast cancer detection as they are safe, non-
invasive, and cost-effective. However, their accuracy depends heavily on equipment quality and the
radiologist’s interpretive expertise [1]. Variations in image quality and the subjectivity of the radiologist's
reading lead to a high risk of misclassification, especially in the early stages of diagnosis. Therefore, there is
a need for an automated method that can classify images accurately and consistently without being
influenced by differences in perception or experience of the operator [7].

Convolutional Neural Networks (CNNs) are widely applied in medical image analysis due to their
strong capability to automatically extract hierarchical spatial features from visual data, enabling accurate
identification of benign and malignant tumors. Unlike traditional machine learning algorithms that rely on
handcrafted feature extraction, CNNs learn discriminative features directly from raw image inputs. This
characteristic is particularly important for breast ultrasound images, which often suffer from speckle noise,
low contrast, and complex texture patterns. Consequently, CNNs have been successfully utilized across
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various medical imaging modalities, including mammography, ultrasound, MRI, X-ray, and pathology
images, demonstrating superior performance in breast cancer detection and classification tasks [8], [9], [10].

Several previous studies have demonstrated that CNN-based approaches consistently outperform
traditional machine learning methods in breast cancer detection and classification tasks. Zakareya (2023)
applied a residual-based CNN architecture and GoogLeNet, which resulted in 93% accuracy in the
classification of benign and malignant breast cancers [11]. Jabeen (2022) utilized feature extraction from the
DarkNet-53 architecture, followed by entropy-based feature selection and probabilistic merging, which
achieved 99.1% accuracy on the BUSI dataset [12]. Naeem and Saleem (2024) developed an EfficientNet-
B0-based CSA-Net combined with channel and spatial attention modules and the Nadam optimizer, resulting
in a classification accuracy of up to 92.3% [13]. Latha (2024) assessed the performance of the EfficientNet-
B7 architecture in classifying breast cancer ultrasound images, reaching an accuracy rate of 99.14% [14].
Balasubramaniam (2023) convolutional neural network derived from a modified LeNet architecture to
perform direct classification on ultrasound images without relying on transfer learning, achieving an accuracy
of 89.9% [15].

Numerous studies have demonstrated the effectiveness of Convolutional Neural Network (CNN)
architectures for breast cancer classification using ultrasound images. Previous research has primarily
focused on evaluating a single CNN architecture or optimizing model performance using a fixed optimization
algorithm. While these approaches have achieved high accuracy, they provide limited insight into how
different CNN architectures interact with various optimization strategies during the training and
generalization processes.

Therefore, this study addresses this research gap by systematically evaluating two widely used CNN
architectures, namely ResNet50V2 and MobileNetV2, in combination with three different optimization
algorithms: Adam, RMSprop, and Stochastic Gradient Descent with Momentum (SGDM). Unlike prior
studies, this research emphasizes a cross-architecture and cross-optimizer comparison to analyze their
influence on convergence stability, generalization capability, and classification performance. This
comprehensive evaluation constitutes the main novelty of the present study. The findings are expected to
support the development of reliable computer-aided diagnosis systems and assist practitioners in selecting
appropriate deep learning models for breast ultrasound image analysis.

2. MATERIAL AND METHOD

Previous studies have established that Convolutional Neural Networks (CNNs) are among the most
effective deep learning approaches for medical image analysis, particularly for breast cancer classification
using ultrasound images. Compared to traditional machine learning methods, CNNs are capable of
automatically learning hierarchical spatial features directly from raw image data, which is essential for
handling speckle noise, low contrast, and complex texture patterns commonly found in breast ultrasound
images [6], [8], [16]. Consequently, CNN-based models have consistently demonstrated superior
performance in breast tumor classification tasks [9], [17].

From a methodological perspective, prior research has shown that classification performance is not
solely determined by the CNN architecture, but is also significantly influenced by the optimization algorithm
used during training. Adaptive optimizers such as Adam and RMSprop have been widely adopted due to their
fast convergence and ability to handle noisy gradients [6], [18], [19]. However, several studies have reported
that momentum-based optimizers, such as Stochastic Gradient Descent with Momentum (SGDM), can
provide more stable training dynamics and improved generalization performance, particularly in deep neural
networks applied to medical imaging tasks [20], [21].

Based on these methodological findings, this study adopts a transfer learning framework using two
representative CNN architectures, namely ResNet50V2 and MobileNetV2. ResNet50V2 was selected due to
its residual learning mechanism, which effectively mitigates the vanishing gradient problem and enhances
training stability in deep networks [22], [23]. In contrast, MobileNetV2 was chosen for its lightweight
architecture and computational efficiency, achieved through depthwise separable convolutions and inverted
residual blocks, making it suitable for deployment in resource-constrained environments [24], [25].
Furthermore, the use of three different optimizers, Adam [18], RMSprop [6], and SGDM [20], [21] allows
for a systematic evaluation of how optimization strategies influence convergence behavior, generalization
capability, and classification accuracy in breast ultrasound image classification. The effectiveness of the
model is measured through commonly used evaluation indicators, including accuracy, precision, recall, and
F1-score. A comprehensive illustration of the research procedure is presented in Figure 1.

2.1  Data Collection

This research utilizes the Breast Ultrasound Images (BUSI) dataset, originally released by Walid Al-
Dhabyani et al. in 2018 [26] and publicly accessible via the Kaggle platform [27]. This dataset comprises 780
ultrasound images collected from female patients aged 25 to 75 years, and is grouped into three categories:
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benign, malignant, and normal (see Table 1). It has been widely utilized in building deep learning-based
models for tasks such as breast cancer classification, detection, and segmentation [5], [28], [29], [30].

Data Splitting

Convolutional
Neural Network

Data
Preprocessing

Collecting Data

Optimizer Architecture
—
Evaluation a3
RMSprop
MobileNetv2
SGDM

Figure 1. Research Methodology

Table 1. BUSI Dataset Class Distribution from Kaggle

No Category Number of Images
1 Benign 487
2 Malignant 210
3 Normal 133
Total 780

Benign Malignant Normal
Figure 2. Representative Samples of the BUSI Dataset Images

Figure 2 illustrates representative samples from the BUSI dataset, including benign, malignant, and
normal breast ultrasound images. Benign lesions typically exhibit well-defined boundaries and homogeneous
textures, whereas malignant tumors often present irregular shapes, ill-defined margins, and heterogeneous
internal structures. Normal images show uniform tissue patterns without visible mass formation. These visual
characteristics are consistent with previously reported ultrasound imaging features in breast cancer diagnosis.

2.2  Data Preprocessing

In this stage, image data pre-processing is carried out before it is used in training the deep learning
model. The dataset comprises breast ultrasound images classified into three categories: benign, malignant,
and normal. To enhance training stability and efficiency, image normalization is performed by rescaling pixel
values from the original 0-255 range to a 0-1 range. Additionally, data augmentation is employed to enhance
both the variation and volume of the training dataset. The augmentation techniques implemented include
rotation, horizontal and vertical flips, zooming, translation, shearing, and brightness adjustments. With this
pre-processing process, it is expected that the image data used can have optimal quality and support
maximum model performance in the classification process. Furthermore, this method contributes to
minimizing overfitting by supplying a more diverse set of training samples without requiring extra manual
data acquisition.

2.3  Data Splitting

During the data splitting phase, the pre-processed image dataset is partitioned into three subsets:
training, validation, and testing data. This separation follows the Hold-Out Validation approach, with 70%
allocated for training, and 15% each for validation and testing. The training set is used to fit the model and
optimize its parameter weights. The validation subset is used during training to monitor model performance
and fine-tune hyperparameters, helping prevent overfitting. Finally, the testing set is used to evaluate the
model's generalization capability on previously unseen data. Data distribution is random, but the proportions
of data in each class are balanced and representative.
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2.4  Deep Learning

Deep learning (DL) refers to a machine learning approach that relies on artificial neural networks,
extensively employed to address the challenges of early breast cancer detection using ultrasound imaging
[16]. DL techniques have been applied across diverse areas, including synthetic image generation, object
detection, segmentation, and the classification of breast lesion images [31]. These various approaches have
even obtained official certification and started to be applied in clinical environments [32]. Deep learning
methods have shown comparable performance to medical experts in breast cancer detection, offering
valuable support to less experienced clinicians in improving diagnostic accuracy within clinical practice
[17].

2.5  Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) is a specialized deep learning algorithm tailored for
processing image data. It is especially effective for two-dimensional image classification tasks. CNNs take
images as input and autonomously learn to extract relevant features, thus removing the need for handcrafted
feature extraction [18]. CNN consists of several convolutional layers that are in charge of detecting important
features in the image [28]. CNN, as part of Deep Neural Networks, excels in capturing characteristics of up
to more complex shapes and objects in deeper layers [21]. CNNs have been used extensively in tumor
classification in the medical world, one of which is in breast ultrasound (BUS) images [33]. Although CNNs
excel at capturing local features, their capacity to model long-range dependencies is limited by the size of
their receptive fields [34]. The basic formula used in CNN for the convolution process is shown in Equation
1 [35].

ai,j = ?n:O Zi:o Wm,nxi+mj+n (1)

In the formula, (W,,)represents the kernel or filter weight at position (m, n), while
(Xi+mj+n) denotes the input image pixel value at position (i + m,j + n). The value (s) indicates the size of
the filter, for example, 3 for a 3x3 filter. The result of the convolution operation at position (i, j) is denoted
by a; ;. Convolutional Neural Network architecture can be seen in Figure 3.

Extracting Features Classification

Input @

Convolution Pooling Fully connected

Figure 3. Convolutional Neural Network Architecture

2.6 ResNet50V2

ResNet50V?2 is an enhanced convolutional neural network architecture developed as an improvement
over ResNet50, demonstrating better performance compared to earlier models, including ResNet101. It
overcomes the issue of gradient vanishing by implementing residual blocks that help maintain consistent
gradient propagation during the training phase. In its implementation, the network organizes several residual
blocks with skip connections that span across multiple layers, thus facilitating the model’s learning process.
In addition, ResNet50V2 uses a pre-activation mechanism within the weight layers, which also enhances both
efficiency and predictive accuracy. Due to its advanced design, this architecture is known to deliver highly
accurate prediction results across a wide range of datasets [23], [22]. ResNet50V2 architecture can be seen in
Figure 4.
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Figure 4. ResNet50V2 Architecture
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2.7  MobileNetV2

MobileNetV2 is a CNN architecture recognized for its computational efficiency, rendering it well-
suited for deployment on devices with limited resources, including mobile phones and loT-based systems.
This architecture has been initially trained using the large-scale ImageNet dataset, which comprises a wide
range of image classes. The results of this initial training provide a robust and ready-to-use feature extractor,
making it an invaluable foundation in various computer vision tasks [24], [25]. By using these pre-trained
models, the training process for specialized applications becomes faster and more efficient, as the models
already have a basic understanding of common visual patterns and features, which can improve model
performance on new datasets. MobileNetV2 processing model can be seen in Figure 5.
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Figure 5. MobileNetV2 Processing Model

2.8 Adaptive Moment Estimation (ADAM)

Adam represents a dynamic optimization method that merges the advantages offered by both the
Momentum and RMSProp approaches [6]. Adam dynamically adjusts the learning rate for each parameter,
improving the efficiency and speed of training on various deep learning models, including medical image
classification. Adam's effectiveness in handling models that have many parameters has been proven in
various studies [2].

2.9  Root Mean Square Propagation (RMSprop)

RMSprop is an optimization method designed to mitigate the issue of fluctuating learning rates by
employing a moving average of squared gradients to adaptively regulate the learning rate, thus ensuring more
stable training. This makes it very useful in training deep learning models, especially in medical image
classification involving large and noisy datasets [19], [36].

2.10 Stochastic Gradient Descent with Momentum (SGDM)

SGDM is a basic optimization algorithm widely used in neural network training to accelerate
convergence towards the minimum value of the cost function. By adding momentum, SGDM considers not
only the current gradient but also the previous direction of movement, thus helping to avoid oscillations and
speed up the training process. The network parameters are updated using the following equation, which
calculates the gradient as the basis for weight adjustment [6].

3. RESULT AND DISCUSSION

This research assesses the classification effectiveness of two CNN models, ResNet50V2 and
MobileNetV2, in distinguishing breast cancer ultrasound images across three categories: benign, malignant,
and normal. Following pre-processing, the dataset was partitioned via the Holdout method, allocating 70%
for training and 30% for validation and testing. Both models were trained and tested using three different
optimization algorithms: Adam, RMSprop, and SGDM.

3.1 Data Preprocessing

At this stage, the image data normalization and augmentation process is carried out. Normalization
rescales pixel intensities from the original 0-255 range to a 0-1 scale to stabilize and accelerate training.
Furthermore, data augmentation artificially increases the diversity of training data by generating varied
samples without the necessity of manual data collection. The augmentation techniques applied in this
research include image rotation up to 15 degrees, maximum image zoom by 10%, horizontal and vertical
image shift by 10% each, and horizontal image reversal. To further enhance model generalization, these
augmentation techniques were designed to simulate various image conditions commonly encountered in
clinical practice. Augmentation-generated images with diverse variations in position, orientation, and size, as
illustrated in Figure 6.
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Figure 6. Augmentation Result

3.2  Data Splitting

The Breast Ultrasound Images (BUSI) dataset used in this study is divided into training, validation,
and testing subsets. The holdout method is applied for dataset splitting, assigning 70% for training, 15% each
for validation and testing. This partitioning is performed randomly using the train_test_split function from
the scikit-learn library, with a fixed random_state parameter to maintain reproducibility. Table 2 presents the
detailed outcomes of this data split.

Table 2. Hold Out Data Sharing Results

Class Training Data  Validation Data  Testing Data
Benign 96 21 21
Malignant 102 22 22
Normal 93 20 20
Total 291 63 63

3.3  Data Training Using a Deep Learning Model

In this modeling, a CNN architecture based on the TensorFlow Keras framework is used to classify
224-pixel images into three classes, namely benign, malignant, and normal. The applied CNN model not only
consists of convolution and pooling layers, but also utilizes transfer learning techniques by using the base
(pre-trained) models ResNet50V2 and MobileNetV2. After the base architecture, several additional layers are
added, including GlobalAveragePooling2D, a Dense layer with 128 units and ReL U activation, Dropout of
0.3, and a dense output layer with three neurons, using softmax as the activation function. The model was
optimized using three different optimizers, namely Adam, RMSprop, and SGDM, each employing a learning
rate of 0.0001 and a mini-batch size of 32. To overcome potential overfitting and handle data imbalance
between classes, early stopping, model checkpoint, and class weighting techniques were used. The
ResNet50V2 model training process with each optimizer is shown in Figures 7-9, while the MobileNetV2
training process is shown in Figures 10-12.

Training and Validation Accuracy Training and Yalidation Loss

— Trsining Lass

— Traming Antutscy

— Waldanon ACCuraly — Vabdason Loss

Epoch Epoch

Figure 7. Training and Validation Performance of ResNet50V2 with Adam

Figure 7 presents the training and validation curves of the ResNet50V2 model utilizing the Adam
optimizer, showing an increase in training accuracy to above 85%, with validation accuracy stable in the
range of 80-83%. The loss value on both datasets decreases consistently to below 0.5 without a significant
difference, indicating the model can learn well without overfitting. Overall, the model showed stable and
fairly optimal performance in breast ultrasound image classification.

Figure 8 illustrates the training and validation outcomes of the ResNet50V2 model employing the
RMSprop optimizer, showing a fairly steady increase in accuracy on both datasets. The validation accuracy is
higher than the training accuracy throughout training, with the final value above 85%. The loss values for
both training and validation datasets progressively decline below 0.5, maintaining a consistent pattern
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without notable discrepancies between them. These results show that the model with the RMSprop optimizer
can learn well and has optimal validation performance without any indication of overfitting.
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Figure 8. Training and Validation Performance of ResNet50V2 with RMSprop
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Figure 9. Training and Validation Performance of ResNet50V2 with SGDM

Figure 9 illustrates the training results of the ResNet50V2 model using the SGDM optimizer over 45
epochs. The training accuracy increases to about 88%, while the validation accuracy is slightly higher and
stable at about 90%, indicating excellent model generalization. The training loss decreased to about 0.38, and
the validation loss decreased steadily to reach 0.32. The graph shows that the model can learn effectively
without overfitting, as the performance on the validation data remains consistent and does not deteriorate.
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Figure 10. Training and Validation Performance of MobileNetV2 with Adam

The figure presents the training outcomes of the MobileNetVV2 model optimized with Adam over 50
epochs. The training accuracy attains approximately 84%, whereas the validation accuracy stabilizes at 78%.
The training loss drops to 0.40, while the validation loss stops decreasing at around 0.60. The model
performed well, successfully capturing training data patterns; however, slight overfitting is evident as
validation performance showed no improvement over time.
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Figure 11. Training and Validation Performance of MobileNetV2 with RMSprop
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Figure 11 shows the training results of MobileNetV2 with the RMSprop optimizer for 50 epochs. The
training accuracy attains approximately 82%, whereas the validation accuracy is higher, stabilizing around
89%. The training loss decreased to 0.55, and the validation loss continued to decrease to about 0.40. The
model shows excellent performance without signs of overfitting, with strong generalization to the validation
data.
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Figure 12. Training and Validation Performance of MobileNetV2 with SGDM

Figure 12 shows the training results of MobileNetV2 with the SGDM optimizer for 50 epochs. The
training accuracy reaches about 83%, while the validation accuracy stabilizes around 90%. The training loss
declines to roughly 0.45, while the validation loss reduces to about 0.35. This indicates that the model is not
only able to learn well, but also able to maintain strong performance when tested on new data.

Table 3. Architecture Training Accuracy Results

. - Training Validation Testing

Architecture Optimizer Accuracy (%) Accuracy (%) Accuracy (%)
Adam 86.94 79.37 87.30

ResNet50V2 RMSprop 87.29 87.30 88.89
SGDM 85.22 93.65 92.06
Adam 86.67 79.37 82.54

MobileNetV2 RMSprop 82.13 87.30 85.71
SGDM 84.49 90.48 85.71

The Table 3 compares the performance of ResNet50V2 and MobileNetV2 architectures with three
optimizers: Adam, RMSprop, and SGDM. SGDM shows the best validation and testing accuracy in both
models, followed by RMSprop, which is quite stable. Adam had good training accuracy but tended to be
lower in validation and testing, indicating potential overfitting. Overall, SGDM was the most effective
optimizer for both architectures in this experiment.

3.5  Evaluation

In the evaluation stage, the model’s effectiveness is measured using a confusion matrix generated
from the test dataset. This matrix provides a detailed overview of the prediction results by outlining the
number of true positives, false positives, true negatives, and false negatives for each category. Figure 13
illustrates the confusion matrices generated from several tested pre-trained architectures, including
ResNet50V2 and MobileNetV2 with different optimizers.

ResNet50V2 with Adam ResNet50V2 with RMSprop

Confusion Matrix Confusion Matrix
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benign

True Label
malignant
°
True Label

normal
@

0o malignant nomal

benign malignant normal
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Figure 13. Confusion Matrices for ResNet50V2 and MobileNetV2

benign

The ResNet50V2 model with SGDM showed the best performance, with near-perfect classification,
especially in the normal and malignant classes. The combination of ResNet50V2 with RMSprop also gave
high accuracy despite a few errors. In contrast, ResNet50V2 with Adam showed lower performance due to
misclassification in the benign and normal classes. On the MobileNetV/2 architecture, RMSprop produced the
most stable classification, while SGDM and Adam showed more errors, especially in the benign class.
Overall, the combination of ResNet50V2 with SGDM gave the most accurate and balanced classification
results across all classes, which was reinforced by the near-perfect distribution of predictions in the confusion
matrix. Next, the evaluation process is carried out on the performance of the models that have been built
using ResNet50V2 and MobileNetV2 architectures were evaluated with three different optimizers, namely
Adam, RMSprop, and SGDM. Table 4 presents a summary of the evaluation results obtained from these
CNN architectures.

Table 4. Architecture Model Evaluation Results

Architecture Optimizer Class Precision Recall F1-Score Support  Accuracy
Benign 0.90 0.86 0.88 21
Adam Malignant 0.88 0.95 0.91 22 0.87
Normal 0.84 0.80 0.82 20
Benign 0.86 0.90 0.88 21
ResNet50Vv2 RMSprop Malignant 0.90 0.86 0.88 22
Normal 0.90 0.90 0.90 20
Benign 0.94 0.81 0.87 21
SGDM Malignant 0.91 0.95 0.93 22 0.92
Normal 0.91 1.00 0.95 20
Benign 0.94 0.71 0.81 21
Adam Malignant 0.87 0.91 0.89 22 0.83
Normal 0.71 0.85 0.77 20
Benign 0.93 0.67 0.78 21
MobileNetV2 RMSprop Malignant 0.75 0.95 0.84 22 0.86
Normal 0.95 0.95 0.95 20
Benign 0.93 0.67 0.78 21
SGDM Malignant 0.72 0.95 0.82 22 0.84
Normal 0.95 0.90 0.92 20
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Results for the ResNet50V2 architecture indicate that the SGDM optimizer achieved the highest
accuracy, reaching 92%. Specifically, for the Malignant category, all three optimizers demonstrated
consistently high recall scores, suggesting the model’s strong sensitivity in detecting malignant tumors.
Meanwhile, the MobileNetV2 architecture yielded its best results when paired with the RMSprop optimizer,
attaining an accuracy of 86%. Overall, ResNet50V2 outperformed MobileNetV2 across all optimizer
configurations. Notably, the combination of ResNet50V2 with SGDM delivered the top performance metrics,
including accuracy, precision, recall, and Fl1-score, all at 92%. Within the MobileNetV2 framework, the
RMSprop optimizer led with 86% accuracy, followed by SGDM and Adam. These results indicate that
deeper CNN architectures tend to benefit more from momentum-based optimization, while lightweight
models achieve better stability with adaptive learning rate strategies. Furthermore, the consistent performance
across evaluation metrics suggests that the proposed model configuration is robust for multi-class breast
ultrasound image classification.

3.6 Accuracy Comparison

Evaluation Accuracy of CNN Models and Optimizers

ResNet50V2 + RMSprop

ResNet50V2 + Adam

MobileNetV2 + RMSprop 86%
MobileNetV2 + SGDM 84%
MobileNetV2 + Adam 83%
80 82 84 86 88 90 92 94

Accuracy (%)

Figure 14. Comparison of CNN Architectures and Optimizers

Figure 14 shows that ResNet50V2 provides the best overall performance. The combination of
ResNetb0V2 with the SGDM optimizer achieved the highest accuracy of 92%. This indicates that the
ResNet50V2 architecture is better able to utilize the learning strategies provided by various optimizers,
especially SGDM. Meanwhile, MobileNetV2 showed lower performance than ResNet50V2, with the highest
accuracy of 86% when using the RMSprop optimizer. Overall, it can be concluded that the selection of
architecture and optimization algorithm greatly affects the training results. ResNet50V2 with SGDM is the
most optimal combination in this experiment.

3.7  Discussion

This study evaluates the performance of two popular CNN architectures, namely ResNet50V2 and
MobileNetV2, for breast cancer ultrasound image (USG) classification with three types of optimizers: Adam,
RMSprop, and SGDM. The best results were obtained from the combination of ResNet50V2 with SGDM,
which achieved an accuracy of 92%, while MobileNetV2 with RMSprop showed the highest accuracy of
86%.

This result is consistent with a study by Fatih Uysal and Mehmet Murat Kése (2021), who compared
several deep learning models on breast cancer ultrasound image classification, namely ResNet50,
ResNeXt50, and VGG16. In the study, ResNet50 achieved an accuracy of 85.4%, ResNeXt50 was slightly
higher at 85.83%, and VGG16 was at 81.11%. The highest accuracy in this study (ResNet50V2 with SGDM,
92%) showed a significant performance improvement, possibly due to model optimization and selection of a
more effective optimization algorithm [37].

Additionally, this research is related to the work of Jorge F. Lazo (2020), who conducted a
comparison between the VGG-16 and Inception V3 architectures using two training methods (feature
extraction and fine-tuning) for breast tumor classification in ultrasound images. Their fine-tuning of VGG-16
achieved an accuracy of 91.9% and an AUC of 0.934, which closely approaches the highest accuracy
obtained in the present study [38].

The key distinction of the present study lies in its cross-architecture evaluation paired with an
exploration of multiple optimization algorithms, offering a more comprehensive understanding of how
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architecture and optimizer combinations influence breast cancer classification performance on ultrasound
images. In contrast, the work by Uysal et al. primarily concentrated on comparing pre-existing models
without examining optimizer effects, while Lazo et al. emphasized different training strategies.
Consequently, this study not only reinforces previous evidence supporting the efficacy of CNN architectures
in breast cancer detection but also contributes novel insights through a rigorous assessment of optimizer
impacts. The pairing of ResNet50V2 and SGDM emerges as a recommended approach, balancing training
accuracy and stability for practical application in clinical ultrasound-based breast cancer diagnostic systems.

4, CONCLUSION

This study evaluates the performance of two CNN architectures, namely ResNet50V2 and
MobileNetV2, in breast cancer ultrasound image classification with three types of optimizers, namely Adam,
RMSprop, and SGDM. The findings indicate that the integration of the ResNet50V2 architecture with the
SGDM optimizer achieved superior performance, attaining 92% for accuracy, precision, recall, and F1-score.
In contrast, the combination of MobileNetV2 and the RMSprop optimizer yielded an accuracy of 86%, with
precision, recall, and F1-score values of 88%, 86%, and 86%, respectively. Overall, ResNet50V2 consistently
outperformed MobileNetV2 across all evaluation metrics and optimization configurations. These results
underscore the significant influence of both convolutional neural network architecture and optimization
strategy on the effectiveness of medical image classification systems. It is recommended that subsequent
studies incorporate interpretability methods, such as attention mechanisms and heatmap visualizations,
implement fine-tuning procedures for CNN models, and validate their approaches using larger and more
heterogeneous datasets to enhance accuracy and clinical reliability. Furthermore, the outcomes generated
from this study are expected to function as a valuable reference in promoting the progress of deep learning-
based automated diagnostic support systems, particularly in healthcare environments where radiology
personnel are limited.
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