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Abstract 

 
Corn leaf diseases can reduce crop yields and cause financial losses, thus requiring accurate and objective classification 

methods. This study aims to classify four corn leaf conditions, namely Blight, Common Rust, Gray Leaf Spot, and 

healthy leaves, using a Convolutional Neural Network (CNN) approach based on image processing. A systematic 

comparative evaluation was conducted on three CNN architectures, namely MobileNetV2, ResNet50V2, and 

DenseNet201, by examining the effect of architecture-optimizer pairs using Adam and RMSprop to determine the 

optimal model configuration. The results showed that the proposed approach was effective at classifying corn leaf 

diseases, with the highest accuracy of 93% achieved by combining DenseNet201 and the Adam optimizer. This study 

contributes by providing a structured comparative analysis of the performance of CNN architectures and optimizers, 

serving as a reference for the development of more accurate and efficient early-detection systems for plant diseases. 
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1. INTRODUCTION 

Agriculture is one of the strategic sectors that support global food security. Corn (Zea mays) is one of 

the primary commodities that significantly contribute to the economies and food security of many countries. 

However, the yield of maize crops is extremely vulnerable to leaf diseases such as leaf blight, common rust, 

and gray leaf spot. These diseases not only reduce yields but also cause significant economic losses. In the 

United States, total losses due to maize diseases are estimated to be around 40 billion dollars annually [1], 

[2]. With climate change and increasing global food demand, early detection of maize leaf diseases is critical 

to supporting agricultural productivity and resilience [3], [4]. 

Corn productivity is highly susceptible to leaf diseases that can reduce photosynthetic capacity and 

cause significant crop yield losses [5]. In addition, the similarity of visual characteristics between diseases in 

the early stages of infection often leads to misdiagnosis when relying solely on manual observation, 

especially given the limited number of experts and diagnostic facilities in the field. Therefore, an accurate 

approach to classifying corn leaf diseases is needed to support early detection [6]. 

As artificial intelligence and image processing technologies have advanced, deep learning techniques 

have emerged as a key tool for visual pattern identification, including the categorization of photos of diseased 

plant leaves. The Convolutional Neural Network (CNN), which can extract features straight from raw data 

without the need for intricate manual processing, is one of the most successful methods. CNN have 

demonstrated superiority in a range of image classification tasks, including identifying diseases in rice and 

maize leaves [7]. The CNN approach was chosen because it is capable of automatically extracting spatial and 

textural features from images of corn leaf diseases that have complex visual patterns, and has been 

empirically proven to be effective and efficient through various architectures such as MobileNetV2, ResNet, 

and DenseNet in plant leaf disease classification [5], [8]. Despite having less data, training can be done more 

effectively and accurately by using transfer learning techniques with pre-trained architectures like ResNet, 
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DenseNet, and MobileNetV2. To preserve objectivity in the test data, hold-out validation techniques are 

typically used for model evaluation [9], [10]. 

Various studies have shown the effectiveness of CNN in corn leaf disease classification. Imran Khan 

et al. (2024) utilized ResNet50 and showed good sensitivity despite the class similarities, achieving 

validation accuracy of 87.51%, precision of 90.33%, and recall of 99.80% [3].  Research by Putra et al. 

(2022) used CNN ResNet-50 for corn leaf disease image classification, showing that the Adam optimizer 

produced the highest testing accuracy of 98.4% [11]. Research by Al-Gaashani et al. (2025) applied a 

MobileNetV2 CNN with an RMSprop optimizer and data augmentation techniques for leaf disease image 

classification, achieving a testing accuracy of 92.50% [12]. Research by Gumelar et al. (2025) used a CNN 

based on the MobileNetV2 architecture for corn leaf disease image classification and achieved a testing 

accuracy of 96.20% on five leaf condition classes [5]. Research by Mengesha and Mengistie (2025) used a 

DenseNet201 CNN and Adam optimizer, resulting in a testing accuracy of 99.17% [8]. Research by Sharma 

et al. (2025) applied CNN based on ResNet50 and MobileNetV2 architectures in an ensemble scheme with 

Adam optimizer for tomato leaf disease image classification, achieving a testing accuracy of 99.23% [13]. 

Although previous studies have shown that CNN are capable of producing good performance in corn 

leaf disease classification, most of these studies still test a single model configuration or optimizer separately. 

Comparisons of performance between different model configurations and optimizers within a consistent 

testing framework are still limited. This condition indicates the need for research that systematically 

evaluates combinations of models and optimization strategies to obtain more comprehensive results. 

The performance of three CNN architectures MobileNetV2, ResNet50V2, and DenseNet201 along 

with two optimizers Adam and RMSprop is investigated in this study. Accuracy, precision, recall, and F1-

score were used for evaluation, along with an 80:20 hold-out validation split. In contrast to earlier research, 

this strategy seeks to determine the optimal model and optimizer combination for the categorization of maize 

leaf diseases while broadening the range of tests. The results are expected to support the development of a 

more accurate and applicable CNN-based plant disease classification system in modern agriculture [1], [14]. 

 

2. MATERIAL AND METHOD 

This study applied an experimental approach with methodological stages that were systematically 

designed to support the data processing, model development, and performance evaluation of corn leaf disease 

classification. In general, the research methodology flow is presented in Figure 1. 

 

 

Figure 1. Research Methodology 
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2.1. Data Collection and Data Preparation 

The planning includes collecting image data on corn leaf diseases from Kaggle, reviewing relevant 

literature, and identifying research issues in corn leaf disease classification using a CNN approach. At this 

stage, image preprocessing and data splitting are performed using an 80:20 hold-out split. 80% of the data is 

used for training and validation, and 20% for testing. Data augmentation is applied to the training data to 

increase data diversity and reduce overfitting. 

 

2.2. Training and Evaluation Model 

The model was trained on training and validation data with uniform parameters 20 epochs, a 

categorical cross-entropy loss function, and a batch size of 32 for each architecture. Next, an evaluation was 

performed using test data using confusion matrix analysis and classification reports to compare model 

performance. 

 

2.3. Corn Leaf Disease 

Maize leaf diseases are disorders of leaf tissue due to infection with pathogens such as fungi and 

bacteria, which thrive in conditions of moisture, high temperature, and minimal air circulation [15], [16]. The 

disease is generally caused by pathogenic infections such as fungi and bacteria, which thrive in humid 

environmental conditions, high temperatures, and poor air circulation [5], [17]. There are four classifications 

of maize leaf diseases: Blight (grayish-brown oblong spots, caused by Exserohilum turcicum), Common Rust 

(brownish-red pustules, by Puccinia sorghi), Gray Leaf Spot (narrow dark gray spots parallel to the leaf bone, 

by Cercospora zeae-maydis), and Corn Health (healthy green leaves without symptoms). 

 

2.4. Data Mining 

The systematic process of discovering patterns, relationships, and hidden knowledge from large and 

complex data sets is referred to as Data Mining [18],[19]. Data mining is the process of discovering patterns 

or useful information from big data using mathematical, statistical, and artificial intelligence techniques to 

support data-driven decision-making [20]. Structurally, data mining consists of several main functions, 

namely classification, regression, clustering, association, and summarization [21]. 

 

2.5. Deep Learning 

Layered artificial neural networks are used in the machine learning subfield of "deep learning" to 

automatically extract intricate features from large amounts of data [22],[23]. It is excellent at detecting plant 

diseases by processing complex images and performing multi-class classification automatically [10],[24]. 

This method does not require manual feature engineering, mimicking the way the human brain recognizes 

patterns and learns from raw data. In plant disease classification, Khan et al. (2024) found that deep learning 

improved the generalization and effectiveness of leaf image processing [3]. This technology can identify 

subtle disease patterns that are difficult to detect manually or through conventional machine-learning 

approaches [25]. Activation function (ReLU) as formula 1. 

 

f(x) = max⁡(0, x)      (1) 

 

The ReLU activation function is f(x). function for an input x, and max(0,x) is the maximum value 

between two values, namely 0 and x. That is, if x is greater than 0, then the result is x; but if x is less than or 

equal to 0, then the result is 0. 

 

2.6. Convolutional Neural Network (CNN) 

One type of deep learning system is the Convolutional Neural Network (CNN) method, which is 

designed to process grid-like data such as images [26]. CNN does not require human feature design to 

automatically extract features from photos [10],[27]. A convolutional layer, ReLU, a pooling layer, a fully 

connected layer, and softmax for classification make up the architecture [28]. CNN simulates how neurons in 

the visual cortex of the brain react to a little region known as the receptive field [29]. The feature extraction 

process is performed using a small kernel (e.g., 3×3) through a convolution operation formulated 2 

 

S(i, j) = (X ∗ K)(i, j) = ⁡∑ ∑ X(i + m, j + n). K(m, n)nm                 (2) 

 

S(i, j) is the result of the convolution operation at the i-th row and jth column positions of the output. 

X input matrix, K: convolution kernel or filter. (i, j) pixel coordinates at the output of the convolution result. 

X(i+m,j+n): the input image's pixel value at the filter-affected location. K(m,n): the kernel's element value at 

location (m,n). 
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2.7. Data Augmentation 

Data augmentation is an important pre-processing technique in image classification with CNNs, such 

as corn leaf disease detection, which increases the diversity of training data without adding new data to help 

the model generalize better and reduce overfitting [30],[31]. Augmentation is done with image 

transformations such as Rotation Mirroring (flipping) Cropping Contrast, luminance, and color saturation 

adjustments [32], Mathematically, augmentation is modeled as a non-linear transformation of the image: 

x^'=T (X) where 𝑋 is the alteration of the original image, 𝑇, and 𝑥′ is the augmented image. An example of a 

rotation of θ degrees on a 2D image is formulated as: 

 

[
x′

y′
] = [

cos0 − sin0
sin0⁡⁡⁡⁡cos0

] . [
x
y]                                    (3) 

 

Cos θ sin θ: the trigonometric component that determines the rotation of the point in the 2D plane. x, 

y: the coordinates of the point in the original image before augmentation. x', y: point coordinates after the 

image undergoes a rotation transformation. 

 

2.8. MobileNetV2, ResNet50V2 and DenseNet201 Architecture 

MobileNetV2 is an advanced version of MobileNet designed for high-efficiency image classification. 

With bottleneck and linear bottleneck techniques, this architecture improves inference speed and minimizes 

the number of parameters [14]. MobileNetV2 uses Convolutions with depth-wise separability to achieve high 

accuracy with a small model size, making it effective in image recognition tasks such as plant disease 

identification on IoT devices [33]. 

ResNet50V2 is a ResNet design change meant to solve the network's deteriorating accuracy [34],[35]. 

ResNet50V2 has 50 layers and applies residual learning to overcome vanishing gradients. Improvements 

through pre-activation (Batch Normalization and ReLU before convolution) increase training stability and 

accuracy, making it effective for complex image classification such as plant leaf disease detection [36]. 

To improve the efficiency of feature extraction, the CNN-based deep learning architecture 

DenseNet201 connects each layer to the previous layer in a single block [35]. DenseNet201, pre-trained on 

ImageNet, was modified by applying 2D Global Average Pooling, Dense layers, Dropout, and a Softmax 

output layer while removing the default fully connected layer (top=False). This architecture is efficient, 

resistant to vanishing gradients, and suitable for leaf image classification with high visual similarity [9]. 

 

2.9. Adam and RMSProp Optimizer 

One well-liked optimization technique is Adam (Adaptive Moment Estimation) for CNNs which 

adjusts the learning rate of each parameter adaptively based on the estimated mean (first moment) and 

variance (second moment) of the gradient and combines the advantages of momentum [34]. Adam 

Optimizer's main advantage lies in its ability to adaptively update each parameter, making it very stable and 

efficient in the face of varying and sparse gradients [2]. 

RMSProp is an optimization algorithm that overcomes the drawbacks of SGD on non-stationary data, 

such as disease patterns or lighting variations, by adjusting the learning rate based on the most recent gradient 

mean square [23]. RMSProp maintains training stability and prevents loss oscillations by calculating the 

exponential average of gradient square and then adjusting the learning rate adaptively for each parameter [3]. 

 

2.10. Confusion Matrix 

A popular evaluation technique for evaluating the effectiveness of classification algorithms is a 

confusion matrix, particularly in multi-class scenarios like the categorization of [37]. A Confusion Matrix 

helps evaluate model performance in detail by showing TP, FP, FN, and TN values, making it easier to 

identify errors and improve accuracy in the future [38]. This matrix displays the number of accurate and 

inaccurate classifications for each category by comparing the model's anticipated outcomes with the actual 

labels [39]. The basic structure of a Confusion Matrix for two (binary) classes is (see Table 1). 

 

Table 1. Confusion Matrix 

 Predicstion of Positive Prediction of Negative 

Actual Positive True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP) True Negative (TN) 

 

3. RESULTS AND DISCUSSION  

This section presents the results and analysis of deep learning-based corn leaf disease classification. 

Starting from data collection, preprocessing, and data sharing, to training CNN models with various 

architectures. Each stage is explained to demonstrate the method's effectiveness in automatically detecting 

and classifying diseases. 
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3.1. Data Collection 

The corn leaf disease dataset comes from Kaggle with a total of 4,188 images labeled with four 

disease classes: Blight, Common Rust, Corn Gray Spot, and Corn Health [6]. However, the test only used 

half of them, which is 2,094 images. Data distribution per class can be seen in Table 2. 

 

Table 2. Classification of Corn Leaf Diseases 

No. Class Amount of Data Data Used 

1. Blight 1.146 images 573 images 

2. Common Rust 1.306 images 653 images 

3. Corn Gray Spot 574 images 287 images 

4. Corn Gray Spot 1.162 images 581 images 

 Total 4.188 images 2.094 images 

 

Fig.2 shows the 4 classes of corn leaf diseases that will be used for modeling. 

 

 

Figure 2. Corn Leaf Disease Class 

 

3.2. Preprocessing Data 

Data preprocessing is done through three main stages, namely resizing, normalization, and 

augmentation. All corn leaf images were resized to 224x224 pixels to make them uniform and suitable for the 

CNN model input. After that, each pixel is normalized on a scale of 0 to 1 using a division of RGB values by 

255, to speed up the training process and stabilize model learning. The augmentation techniques used include 

random rotation of up to 30 degrees, zoom of 15%, horizontal and vertical shift of 20%, shear of 15%, and 

horizontal and vertical reversal of the image. The data augmentation configuration in this study appears in the 

Table 3. 

Table 3. Data Augmentation Splitting 

Architecture Optimizer Epoch 
Batch 

Size 
Image Size Range Flip 

Zoom 

Range 

Learning 

Rate 

DenseNet201 Adam 20 32 224×224 45° Horizontal 0.2 0.0001 

DenseNet201 Adam 20 32 224×224 45° Horizontal 0.2 0.0001 

MobileNetV2 Adam 20 32 224×224 45° Horizontal 0.2 0.0001 

MobileNetV2 RMSprop 20 32 224×224 45° Horizontal 0.2 0.0001 

ResNet50V2 RMSprop 20 32 224×224 45° Horizontal 0.2 0.0001 

ResNet50V2 RMSprop 20 32 224×224 45° Horizontal 0.2 0.0001 

 

The composition of the augmented data can be seen in Figure 3 

 

Figure 3 shows the original image data and the augmented image data. The augmented image data is 

created by applying various transformations and augmentation techniques to the original data. This provides 
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additional information that varies and enriches the dataset, assisting the model in coping with variations in 

real-world conditions. 

 

 

Figure 3. Data Augmentation Result 

 

3.3. Splitting Data 

After data augmentation, data sharing with deep learning consists of training, validation, and testing 

data. Training data is used to train the model to recognize corn leaf diseases, validation data to evaluate the 

model's performance at the end of each epoch, and testing data to evaluate the model's final performance. The 

holdout technique is used with an initial ratio of 80:20, where 80% is for training and the remaining 20% is 

divided equally into 10% validation and 10% testing. This distribution ratio balances the availability of 

sufficient data for training and sufficient independent data for evaluating the model's performance and 

generalization. With this scheme, the potential for overfitting can be reduced and the model evaluation results 

become more objective and reliable. The distribution of data sharing with the Holdout Technique can be seen 

in Table 4. 

 

Table 4. Results of 80:20 Hold Out Data Splitting 

Hold Out   80:20  

Class Data Train  Data Validation  Data Testing 

Blight 460 57  58 

Common Rust 522 65  66 

Corn Gray Leaf Spot 229 29  29 

Corn Healthy 464 58  59 

 

Table 4 shows the results of data division using the holdout technique with a ratio of 80:20 for testing 

the classification of corn leaf diseases using the CNN algorithm. Data from each class, namely Blight, 

Common Rust, Corn Gray Leaf Spot, and Corn Healthy, were divided into three parts: training data, 

validation data, and testing data. Most of the data was used for training (about 80%), while the rest was 

divided equally for validation and testing (about 10% each). 

 

3.4. Data Training Using Deep Learning 

This model classifies 224x224 pixel corn leaf images into four disease classes. Each model does not 

include the top classification layer, and GlobalAveragePooling2D, Dense 512 units (ReLU), 20% dropout, 

and 4 units of dense output (softmax) layers are added. The softmax activation function is used because the 

classification is multi-class. Adam's optimizer and RMSprop were used to train the model, which had a loss 

and a learning rate of 0.0001. function of categorical_crossentropy. Training was performed for 20 epochs 

with the augmented data. EarlyStopping and ModelCheckpoint callbacks are used to stop training if there is 

no improvement in validation loss and save the best weights. The training process of the deep learning model 

of DenseNet201 architecture using Adam and RMSprop optimizer can be seen in Figures 4 and 5, The deep 

learning model's training procedure of ResNet0V2 architecture Figures 6 and 7 show the training process of 

the deep learning model of the MobileNetV2 architecture utilizing Adam and RMSprop optimizer, while 

Figures 8 and 9 show the same procedure. 

Based on Figure 4, training the DenseNet201 model with data augmentation and the Adam optimizer 

results in consistent increases in training and validation accuracy above 93%, accompanied by a stable 

decrease in loss, indicating good generalization capabilities. Figure 5 shows the performance of DenseNet201 

with the RMSprop optimizer, which is also stable, with training and validation accuracy in the range of 92–

93% and a balanced decrease in loss without any indication of overfitting. In Figure 6, the graph shows an 

increase in training and validation accuracy to around 93% with a continuing downward trend in loss, 

indicating an effective and stable training process. Figure 7 shows the training results of ResNet50V2 with 
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the RMSprop optimizer, where the validation accuracy is relatively stable at around 90% while the training 

accuracy reaches around 93%, with a fairly consistent decrease in loss. Furthermore, Figure 8 shows the 

performance of MobileNetV2 with the Adam optimizer, achieving an accuracy of around 91% on both 

training and validation data and a stable decrease in loss, indicating good generalization. Figure 9 shows the 

training results of MobileNetV2 with the RMSprop optimizer, which produce consistent training and 

validation accuracies of 88–90% and a decreasing loss trend, indicating that the training process runs well 

without significant overfitting. The results and training durations of the deep learning models with 

DenseNet201, ResNet50V2, and MobileNetV2 architectures are shown in Table 5. 

 

 

Figure 4. Deep Learning DenseNet201 Optimizer Adam Model Curve 

 

 

Figure 5. Deep Learning DenseNet201 Curve Model RMSprop Optimizer 

 

 

Figure 6. Deep Learning ResNet50V2 Optimizer Adam Model Curve 

 

 

Figure 7. Deep Learning Model Curve ResNet50V2 Optimizer RMSprop 
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Figure 8. Deep Learning MobileNetV2 Optimizer Adam Model Curve 

 

 

Figure 9. Deep Learning Model Curve MobileNetV2 Optimizer RMSprop 

 

Table 5. Model Training Accuracy Results 

Architecture Optimizer 
Train 

Accuracy 

Valid 

Accuracy 

Testing 

Accuracy 

Training 

Loss 

Valid 

Loss 

Testing 

Loss 

DenseNet201 Adam 94.50% 93.77% 92.92% 0.157119 0.200669 0.180396 
 RMSprop 93.97% 91.86% 91.50% 0.177038 0.208606 0.224577 

MobileNetV2 Adam 91.88% 91.38% 90.09% 0.201050 0.190720 0.231950 
 RMSprop 92.17% 88.99% 87.73% 0.208946 0.253396 0.287457 

ResNet50V2 Adam 93.55% 93.77% 91.50% 0.164651 0.189147 0.209229 

  RMSprop 93.25% 89.95% 91.50% 0.171962 0.214695 0.251979 

 

3.5. Confusion Matrix Evaluation 
Subsequently, the models were evaluated for their performance in data classification using a 

Confusion Matrix. The findings from the matrix of misunderstanding of the DenseNet201 architecture using 

the Adam optimizer and RMprop shows in Fig. 10 and 11. The results of the confusion matrix of the 

ResNet50V2 architecture using the Adam optimizer and RMSprop can be seen in Fig.12 and 13. The results 

of the confusion matrix of the MobileNetV2 architecture using the Adam optimizer and RMSprop can be 

seen in Fig. 14 and Fig.15. 

 

      

        Figure 10. Confusion Matrix Architecture        Figure 11. Confusion Matrix Architecture 

                 DenseNet201 Optimizer Adam   DenseNet201 Optimizer RMSprop 
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          Figure 12. Confusion Matrix Architecture                 Figure 13. Confusion Matrix Architecture 

  ResNet50V2 Optimizer Adam                                 ResNet50V2 Optimizer RMSprop 

 

             

        Figure 14. Confusion Matrix of MobileNetV2             Figure 15. Confusion Matrix Architecture  

                  Optimizer Adam Architecture                                       MobileNetV2 Optimizer RMSprop 

 

Based on Figure 10, the DenseNet201 model with the Adam optimizer shows good performance, 

where the Common Rust and Healthy classes have the highest classification rates, Blight is identified quite 

well, while Gray Leaf Spot has the lowest accuracy and is often confused with Blight and Common Rust. 

Figure 11 shows that DenseNet201 with the RMSprop optimizer and data augmentation achieves high 

accuracy on the Healthy and Common Rust classes and stable performance on Blight, but Gray Leaf Spot 

remains the most difficult class to recognize. In Figure 12, the ResNet50V2 model with the Adam optimizer 

classifies the Blight, Common Rust, and Healthy classes well, but still experiences significant errors in the 

Gray Leaf Spot class. Figure 13 shows similar results for ResNet50V2 with the RMSprop optimizer, where 

Blight and Common Rust are classified accurately, while Gray Leaf Spot still shows a higher error rate. 

Furthermore, Figure 14 shows that MobileNetV2 with the Adam optimizer and data augmentation achieves 

excellent classification for the Healthy, Common Rust, and Blight classes, but still struggles to distinguish 

Gray Leaf Spot from Blight. Figure 15 shows that MobileNetV2 with the RMSprop optimizer achieves high 

accuracy in classifying Common Rust and Healthy, but still shows limitations in distinguishing Blight and 

Gray Leaf Spot. The results of the Confusion Matrix evaluation of the deep learning model using 

measurement metrics, namely Accuracy, Precision, Recall, and F1-score, can be seen in Table 6. 

 

Table 6. Deep Learning Model Evaluation Results 

Architecture Optimizer Class Accuracy Precision Recall 
F1 

Score 
Support 

 Adam Blight  0.90 0.91 0.91 58 

  Common_Rust  0.90 0.97 0.93 66 

  Gray_leaf_spot 0.93% 0.92 0.76 0.83 29 

DenseNet201  Healthy  1.00 0.98 0.99 59 

 RMSprop Blight  0.79 0.93 0.86 58 

  Common_Rust 0.92% 0.95 0.92 0.94 66 



 

ISSN(P): 3024-921X | ISSN(E): 3024-8043 

 

      

122 

 

PREDATECS - Vol. 3 Iss. 2 January 2026, pp: 113-125 

Architecture Optimizer Class Accuracy Precision Recall 
F1 

Score 
Support 

  Gray_leaf_spot  0.95 0.69 0.80 29 

  Healthy  1.00 1.00 1.00 59 

 Adam Blight 0.90% 0.78 0.93 0.85 58 

  Common_Rust  0.98 0.92 0.95 66 

  Gray_leaf_spot  0.77 0.59 0.67 29 

MobileNetV2  Healthy  1.00 1.00 1.00 59 

 RMSprop Blight  0.81 0.83 0.82 58 

  Common_Rust 0.88% 0.93 0.94 0.93 66 

  Gray_leaf_spot  0.63 0.59 0.61 29 

  Healthy  1.00 1.00 1.00 59 

 Adam Blight 0.92% 0.84 0.91 0.88 58 

  Common_Rust  0.97 0.95 0.96 66 

  Gray_leaf_spot  0.83 0.69 0.75 29 

ResNet50V2  Healthy  0.97 0.98 0.97 59 

 RMSprop Blight 0.92% 0.83 0.95 0.89 58 

  Common_Rust  1.00 0.92 0.96 66 

  Gray_leaf_spot  0.77 0.69 0.73 29 

  Healthy  0.98 0.98 0.98 59 

 

Evaluation of deep learning models with DenseNet201, MobileNetV2, and ResNet50V2 architectures 

and Adam and RMSprop optimizers shows that DenseNet201 with Adam has the best performance. For the 

Gray leaf spot and Healthy classes, this model produced the best accuracy of 0.93 with Precision, Recall, and 

F1-Score values over 0.98. Although they are still behind DenseNet201, MobileNetV2, and ResNet50V2 also 

did well, particularly with RMSprop. Therefore, the best setup for this investigation is DenseNet201 and 

Adam together. 

 

3.6. Comparison of Evaluation Result Accuracy 

The combination of DenseNet201 with the Adam optimizer achieved the highest accuracy of 93%, 

surpassing MobileNetV2 (90%) and ResNet50V2 (92%). Adam's optimizer also generally gives higher 

results than RMSprop on the same architecture. Thus, DenseNet201 and Adam are the best configurations for 

corn leaf disease detection based on accuracy. Comparison of CNN evaluation accuracy is shown in Figure 

16. 

 

 

Figure 16. Comparison of CNN Evaluation Accuracy 

 

3.7. Discussion 

The results of the study show that the combination of CNN architecture and optimizer has a 

significant effect on the performance of corn leaf disease classification. Of all the configurations tested, 

DenseNet201 with the Adam optimizer achieved the best performance, with training accuracy of 94.50%, 

validation accuracy of 93.77%, and a test accuracy of 92.92%, along with low, stable loss values. These 

findings indicate that this configuration has the best generalization performance among the models in this 

study. Compared with previous studies, the performance of DenseNet201–Adam in this study is consistent 

with the findings of Mengesha and Mengistie (2025), who reported a test accuracy of 99.17% using the same 

architecture [8]. Although the accuracy in this study is lower, this difference may be influenced by variations 

in the dataset, the number of test samples, the number of classes, and the validation scheme used. However, 
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the results of this study reinforce the evidence that DenseNet201 is a very effective architecture for handling 

leaf disease classification with high visual pattern similarity. 

In the ResNet50V2 architecture, the use of the Adam optimizer resulted in a validation accuracy of 

93.77% and a testing accuracy of 91.50%, which is higher than the results of Imran Khan et al. (2024), who 

reported a validation accuracy of 87.51% using ResNet50 [3]. This improvement indicates that the 

application of ResNet version V2 combined with data augmentation and uniform training parameter settings 

can enhance training stability and model generalization capabilities. 

Meanwhile, MobileNetV2 showed relatively lower performance compared to DenseNet201 and 

ResNet50V2, but still produced competitive performance with the highest testing accuracy of 90.09% using 

the Adam optimizer. These results align with the research by Al-Gaashani et al. (2025) and Gumelar et al. 

(2025), which confirms that MobileNetV2 is suitable for leaf disease classification with high computational 

efficiency, although its accuracy tends to be lower compared to deeper CNN architectures [5], [12]. 

Confusion matrix analysis shows that the Common Rust and Healthy classes are classified with high 

accuracy, while Gray Leaf Spot remains the most challenging class due to its visual similarity to other 

diseases. Unlike previous studies, this study systematically compares three CNN architectures with two 

optimizers in a consistent testing framework and shows that DenseNet201–Adam is the most optimal 

configuration for corn leaf disease classification. 

 

4. CONCLUSION 

This study evaluates the performance of three Convolutional Neural Network (CNN) architectures, 

namely DenseNet201, ResNet50V2, and MobileNetV2, with two optimizers (Adam and RMSprop) for 

image-based corn leaf disease classification. The test results show that DenseNet201 with the Adam 

optimizer provides the best performance, with the highest accuracy of 93%, as well as consistent precision, 

recall, and F1-score values across all classes. ResNet50V2 and MobileNetV2 also showed competitive 

performance with accuracies of approximately 92% and 90%, respectively, confirming that transfer learning-

based CNNs are effective for supporting early detection of corn leaf disease. 

This study has several limitations, including the use of a partial dataset (2,094 images), which limits 

the model's ability to generalize to variations in field conditions, and data imbalance between classes, 

particularly in the Gray Leaf Spot class, which affects classification accuracy due to the similarity of visual 

features between diseases. Furthermore, this study has not explored advanced hyperparameter variations or 

ensemble approaches that have the potential to improve model performance. As a further development, it is 

recommended to use the entire dataset, apply class balancing techniques, and explore ensemble models or 

lightweight CNN architectures to improve accuracy, generalization, and computational efficiency, so that the 

resulting classification system is more robust and applicable to agriculture. 
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