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Abstract

Depression among university students is a critical mental health concern, often exacerbated by academic pressure and
social adaptation. While prior studies have utilized Multi-Layer Perceptron (MLP) models to achieve up to 78%
accuracy, the effectiveness of these systems remains highly sensitive to architectural design and optimization strategies.
To address this gap, this study systematically evaluates the performance of modern MLP architectural variants including
DenseNet, ResMLP, and ResNet paired with SGD, Adam, and RMSprop optimizers. Using a dataset of 1,025 student
records, the methodology integrates Chi-Square feature selection and Min-Max normalization, followed by an 80:20
Hold-Out validation. Results demonstrate that the ResNet-RMSprop synergy yields a superior accuracy of 83.86%,
significantly outperforming traditional MLP benchmarks . By identifying the optimal combination of deep learning
structures and optimization algorithms, this research provides a more robust and precise technical foundation for Al-
driven early detection systems in academic settings.

Keywords: Classification, Hold-Out Validation, Mental Health, Multi-Layer Perceptron, Student Depression.

1. INTRODUCTION

In recent years, mental health issues, particularly depression, have garnered growing global concern
[1]. According to a WHO report, over 350 million individuals worldwide are affected by depression, with the
numbers increasing annually [2]. Depression frequently co-occurs with anxiety disorders, with approximately
40-60% of individuals suffering from major depressive disorder also experiencing anxiety-related symptoms
[2]. His condition is often characterized by prolonged sadness, a loss of interest in activities, and diminished
emotional and physical functioning [3]. Common physical symptoms include disrupted sleep patterns,
appetite loss, and fatigue, while cognitive symptoms may include slowed thinking, suicidal ideation, and
excessive guilt [4].

University students are among the groups most vulnerable to mental health issues, including
depression. The academic workload, social challenges, and the need to adapt to a new university environment
contribute significantly to their mental health struggles [5]. Research by Meda et al. (2023) [6] revealed a
high prevalence of depression among students, with about 17-22% exhibiting severe symptoms. More recent
studies, by Mumenin et al. (2024) [7] have reported even higher rates of depression in low- and middle-
income countries: 43.7% of students in India, 40.9% in Pakistan, and 52.2% in Bangladesh have shown
depressive symptoms. Hence, it is crucial to develop technology-based early detection systems to enable
timely and targeted interventions [8]

To predict depressive states, various approaches have been implemented, including Machine Learning
(ML) and Deep Learning (DL) algorithms. Among the commonly used algorithms for depression
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classification is the Multi-Layer Perceptron (MLP) [9]. MLP is an artificial neural network composed of
several fully connected layers of neurons [10]. According to Chung et al. (2022) [4], MLP has demonstrated
an accuracy of up to 78% in predicting mental health disorders among children and an AUC of 88% in
detecting prenatal depression [10]. Due to its capability to learn complex data patterns, MLP is considered a
strong candidate for symptom-based psychological classification tasks [11]. However, most existing studies
focus on standard MLP implementations, without exploring specialized architectural variants or their
interactions with different optimization strategies, leaving a significant gap in identifying the most efficient
configuration for student-specific data.

However, the performance of MLP models heavily depends on both the architectural design and the
choice of optimization algorithms. Poor architectural decisions may lead to overfitting or weak generalization
capabilities [12] while unsuitable optimizers can slow down training or prevent optimal performance [13]. A
major challenge in building effective MLP models lies in identifying the right combination of architecture
and optimizer to ensure accuracy, stability, and interpretability [14]. While previous research has often
explored architectural models and optimization techniques separately, a comprehensive evaluation comparing
modern architectures such as DenseNet, ResMLP, and ResNet across multiple optimizers (SGD, RMSprop,
and Adam) remains largely unexplored in the context of student depression. This study addresses this gap by
providing a systematic comparative analysis of these nine combinations. The novelty of this research lies in
identifying the optimal synergy between residual-based architectures and adaptive optimization to enhance
the sensitivity and accuracy of early mental health screening tools.

Several studies have proposed architectural variants such as Dense Layers, ResMLP, and ResNet.
Dense layers are easy to implement but prone to overfitting without regularization techniques such as dropout
or L2 regularization [10]. ResMLP incorporates residual learning to mitigate performance degradation in
deeper networks [15]. Originally designed for image recognition tasks, ResNet utilizes shortcut connections
between layers to enhance learning in very deep networks. Although primarily used for image data, ResNet
has also yielded promising results with tabular datasets (Ravid Shwartz-Ziv, Pfister & Sercan, n.d.)

In addition to architectural choices, the selection of optimizers plays a key role in efficient model
training. Three widely used optimizers in MLP training are Stochastic Gradient Descent (SGD), RMSprop,
and Adam [17], [18]. While SGD is a foundational optimizer, it is sensitive to learning rates and often
requires longer training times [13]. RMSprop offers better stability when dealing with data with high
variability and is frequently used in DL models that require adaptive learning [19]-[21]. Adam has gained
popularity for combining the advantages of both SGD and RMSprop, enabling faster, more stable training
[10].

While previous research has explored architectural models and optimization techniques separately, a
comprehensive evaluation comparing different architectures (Dense, ResMLP, and ResNet) and optimizers
(SGD, RMSprop, and Adam) remains largely unexplored, particularly in the area of student depression
classification. Accordingly, this research focuses on assessing how different combinations of MLP
architectures and optimization algorithms perform in identifying depression levels among university students.
The assessment uses evaluation metrics suitable for imbalanced data classification, such as accuracy,
precision, recall, and F1-score. The outcomes are anticipated to provide data-driven insights that could help
build Al-powered systems for the early identification of mental health issues.

2. MATERIAL AND METHOD

The methodological process begins by preparing the dataset, including selecting relevant features and
applying normalization techniques. Afterward, the data is partitioned using an 80:20 Hold-Out Validation
strategy. Distinct from conventional methodologies that typically focus on single-model optimization, the
approach illustrated in Figure 1 implements a systematic grid-evaluation framework. The portion allocated
for training is employed to build the MLP model using two primary approaches: employing different
optimization algorithms (Adam, SGD, RMSprop) and implementing alternative network architectures
(ResNet, DenseNet, ResMLP). By integrating specialized architectures like ResNet and ResMLP which are
traditionally used for image data into a tabular data classification task, this methodology offers a novel
perspective on improving screening accuracy. The performance of each training outcome is evaluated based
on accuracy and is further analyzed comparatively to identify the most effective configuration before
conclusions.

2.1. Data collecting

The dataset utilized in this study is the "Student Mental Health Dataset,” sourced from the Kaggle
platform. It contains information related to mental health issues among university students, with a particular
focus on symptoms of depression. The dataset comprises 14 variables, including demographic data (such as
age and gender), lifestyle habits, and daily routines (such as sleep patterns and exercise frequency). In total,
there are 1,025 data entries. Additionally, the dataset includes mental health indicators that may influence the
severity of depression among students.
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The target variable in this dataset is a categorical attribute named "Depression," which is divided into
two classes: "Yes" (indicating the student is experiencing depression) and "No" (indicating the student is not
experiencing depression). This dataset is utilized to develop a predictive model aimed at identifying signs of
depression in students through the application of machine learning techniques, specifically focusing on the
Multi-Layer Perceptron (MLP) and its architectural variations.
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Figure 1. Research Methodology

2.2. Pre-processing Data

Before analyzing the data using machine learning models, a procedure known as data preprocessing is
carried out, this step aims to clean and modify the dataset to ensure it is suitable and optimized for the
training process [22]. The goal is to minimize potential errors or misinterpretations during data input by
removing missing or inconsistent entries and reducing the number of attributes used in the classification
process [23].

To improve model performance and reduce data dimensionality, this study applies the Chi-Square (3?)
method as a feature selection technique. The Chi-Square test assesses the association between each feature
and the target class, enabling the selection of statistically significant features [24]. In this research, the
fundamental formula used for the Chi-Square calculation is equation 1.

N (AD — CB)?
Xz(ti' Ci) = (A+C0)(B+D)(A+B)(C+D) ?

In the formula, value A represents the number of data entries in the class c; that contain the featuret;,
while B is the number of entries outside the classc; that also contain that feature. Value C denotes the number
of entries in the class c; that do not include feature t;, and D is the count of entries outside class c; that lack
the feature. The total number of entries in the dataset is represented by N. The output of this computation
indicates the strength of association between a given feature and the target class, which is then used to rank
and select the most relevant features.

The selection of the Chi-Square method in this study is strategically based on its proficiency in
handling the categorical data that dominates this mental health dataset. Unlike dimensionality reduction
techniques such as PCA, which transform original features into uninterpretable components, Chi-Square
preserves the original attributes like financial stress and family history. This provides a novel contribution in
terms of model transparency, ensuring that the most influential features are statistically identified before
being processed by complex architectures—a step often overlooked in conventional studies.

Subsequently, a normalization step is performed to harmonize the range of all feature values,
preventing any single feature from disproportionately influencing the model's learning [26]. In this study, the
Min-Max Scaling technique is adopted, which scales the data values to fall within a defined interval,
typically 0 to 1. The transformation using Min-Max Scaling can be represented mathematically as equation 2.

N = N — min (n)
" (n) —min (n)

@

In the Min-Max normalization method, the adjusted value N’ is calculated by taking the original data
point N, subtracting min (n) (the minimum value of the feature), and then dividing the result by the range
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calculated from (n) minus min (n). This transformation yields values that fall within a defined range,
generally from 0 to 1 [27].

2.3. Splitting data

The next stage in the model development process is dataset splitting, which is vital for providing an
unbiased assessment of the model's effectiveness. In this study, the Hold-Out method is used as a widely
adopted data-splitting approach in machine learning due to its simplicity and effectiveness for providing an
initial performance assessment of the model.

The Hold-Out technique splits the dataset into two parts: a majority for training and a smaller portion
for testing. In this research, an 80:20 split is used, with 80% dedicated to training and validation, and the
remaining 20% reserved for testing. The split is performed randomly while maintaining class-balanced
distributions across both subsets.

The Hold-Out approach is chosen for its ability to provide a low-bias performance estimate with
minimal computational complexity, making it particularly suitable for datasets of medium to large size [28].
To support efficient training and testing, the partitioned data is organized into separate directories, facilitating
further data handling and preventing data leakage between subsets.

2.4. Student Depression

Depression refers to a psychological condition marked by continuous feelings of sadness, loss of
interest, and a decline in both emotional and physical functioning [3]. Common physical symptoms include
fatigue, decreased appetite, and sleep disturbances. Individuals with depression may also experience
cognitive symptoms such as excessive guilt, suicidal thoughts, and difficulty concentrating or making
decisions [4].

Mental health is a critical global issue, especially as university students are particularly vulnerable to
psychological stress due to the challenges and complexities of academic life. Among students, mental health
disorders such as anxiety and depression are prevalent and significantly affect social interaction, academic
performance, and overall well-being [7]. If left unaddressed, depression can lead to severe consequences such
as academic failure, dropping out, or even self-harm and suicide [9]. A study conducted by Meda et al. [6],
involving 1,388 participants, revealed that nearly 20% of students reported experiencing severe depressive
symptoms or suicidal ideation, with financial hardship being a significant contributor to their emotional
distress.

2.5.  Machine Learning

Machine Learning (ML), a branch of Artificial Intelligence (Al), enables machines to learn from data
and make predictions or decisions autonomously [29]. It leverages statistical algorithms to detect patterns in
datasets and automatically improves its performance over time [30]. Today, ML has been widely
implemented across domains such as finance, healthcare, industrial production, and psychological research.

Currently, machine learning techniques are increasingly utilized in fields such as robotics, computer
vision, language assistants, medical diagnostics, marketing, industrial operations, and scientific research.
Lately, ML approaches have also been used in designing new material alloys and the prediction of their
properties [31][32]

In the medical domain, ML algorithms prove valuable in analyzing patient data to support clinical
decision-making. ML encompasses several learning paradigms, such as classification, regression, and
clustering, each suited to different types of problems and capable of yielding diverse outcomes depending on
the context [32].

2.6. Multi-Layer Perceptron (MLP)

The Multi-Layer Perceptron (MLP), a form of artificial neural network (ANN), is often labeled a basic
or 'vanilla' neural network due to its simple structure, modeled after the human brain's neural systems, which
are composed of billions of linked neurons [33]. An MLP comprises three main types of layers: an input
layer, several hidden layers, and an output layer. Each of these layers includes neurons interconnected
through weighted links, and each neuron applies an activation function to process incoming signals [34]

The prediction process in an MLP is carried out through forward propagation, in which signals flow
progressively from the input to the output layer. Neurons in the hidden layers use non-linear functions such
as ReLU or sigmoid to transform inputs. Key parameters that impact how effectively the MLP model
performs include the count of hidden nodes the selection of activation functions, and the training techniques
like backpropagation and the gradient descent method. The mathematical expression for the output of the
MLP model is presented below [35], which can be seen as equation 3.
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m n

y=8( > (wPshgh() + b@)X= > {WP) +b® ®)

i=1 j=1

In the given equation, y denotes the prediction vector produced by the MLP model, which is computed
based on the input vector x;, representing the feature set of a data sample. The weights connecting the input
layer to the hidden layer are represented as w(, while the weights linking the hidden layer to the output
layer are denoted as w(®. The activation function applied in the hidden layer is symbolized by §&,, and the
activation function used in the output layer is represented by 6.

Bias terms are included for each layer, which b™ is assigned to the hidden layer and b® is
associated with the output layer. The parameters m and n indicate the number of observations (examples) and
the corresponding quantity of input attributes in the dataset, respectively. This architecture enables the MLP
to capture intricate non-linear patterns linking the input data to the output results, making it widely applicable
for use in solving either classification or regression problems.

Through training, MLP adjusts its weights and biases to minimize prediction error, allowing it to
extract meaningful patterns from data. Due to its effectiveness in modeling complex and non-linear data,
MLP has been extensively used in diverse domains, including tabular data processing, image analysis, and
natural language processing [35].

2.7. Dense Layer

The dense layer, also known as a fully connected layer, is a key element in neural networks, where
each unit connects to all neurons in both the preceding and succeeding layers. This structure facilitates
learning complex feature representations through a process of linear mapping followed by a non-linear
function such as ReLU or sigmoid. Dense layers are widely employed in tasks such as pattern recognition,
image categorization, and Natural Language Processing (NLP).

In medical prediction tasks, such as diagnosing diabetes, incorporating dense layers into neural
network architectures significantly enhances prediction accuracy and model efficiency. When combined with
validation techniques such as K-fold cross-validation and hyperparameter tuning, models can learn more
effectively from data, leading to improved predictive performance [36].

To further enhance generalization, dense layers are often integrated with regularization techniques
such as dropout. As demonstrated by the DenseNet architecture, dense connectivity strengthens feature
propagation, reduces parameter counts, and addresses vanishing gradients in deep networks [37].

2.8 Residual Multi-Layer Perceptron (ResMLP)

Residual Multi-Layer Perceptron (ResMLP) is a deep learning architecture composed entirely of MLP
layers and residual connections, without convolutional or attention mechanisms. Originally proposed by
Touvron et al. (2021) [38], ResMLP offers a streamlined yet competitive alternative for image classification
tasks. The model processes input data as patches using linear transformations and feedforward layers, with
residual connections to enhance training stability. In this study, ResMLP is adapted for tabular data to
explore its feature-extraction capabilities without requiring complex attention mechanisms, thereby offering
higher computational efficiency for depression detection while mitigating the vanishing gradient problem
through its residual blocks.

An advancement of this architecture is E-ResMLP+, a hybrid model combining the strengths of
ResMLP and EfficientNetV2b0. Designed specifically for wheat species classification, E-ResMLP+
leverages EfficientNet's robust feature extraction and ResMLP's straightforward feedforward structure.
According to the study by Donmez et al. (2024) [39], this model achieved 98.33% classification accuracy
without requiring data preprocessing or specialized hardware, demonstrating its effectiveness for high-
accuracy image classification with minimal preprocessing.

2.9  Residual Neural Network (ResNet)

Residual Neural Network (ResNet) is a deep learning architecture introduced by Kaiming He et al. in
2015 to address the problem of accuracy degradation in very deep networks through skip connections.
Research has extensively explored optimizing ResNets to enhance both model efficiency and accuracy,
particularly for deployment on resource-constrained devices. In the context of this study, the implementation
of ResNet on tabular student mental health data represents a significant methodological shift. By utilizing
skip connections, the model ensures that the nuanced psychological indicators identified during
preprocessing are preserved across deeper layers, preventing the loss of critical information and stabilizing
the gradient flow during training a common challenge in traditional MLP models.

One such optimization approach involves reducing start-up latency by pruning channels and residual
blocks. In [40], a two-stage optimization method was proposed, consisting of approaches for Global
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Constraints and for reducing start-up latency. This method achieved a latency reduction of 70.40%,
surpassing the previous method by 13.63% when using only channel pruning, thus allowing immediate
computation on edge platforms such as desktop CPUs, FPGAs, ARM CPUs, and PULP platforms.ResNet has
proven highly effective in image recognition tasks and is widely employed for applications like object
detection in photos, quality assessment, and even signal classification [41].

2.10 Stochastic Gradient Descent (SGD)

Among the most popular optimizers in machine learning is Stochastic Gradient Descent (SGD),
particularly effective for large-scale datasets due to its ability to optimize efficiently over multiple epochs, or
full passes through the training data [42].

A recent study, by Alharbi et al. (2025) [43], applied SGD to evaluate sentiment in both Arabic and
English film critiques, demonstrating its capability to handle linguistic diversity and cultural nuances. It
yielded accuracy scores of 84.89% on Arabic data and 87.44% on English data, highlighting the algorithm’s
effectiveness and adaptability. Thanks to its flexibility in adjusting model complexity, SGD is well-suited for
various types of textual data, including content with spoilers or stylistic variations.SGD is utilized as a
baseline optimizer to evaluate the performance of non-adaptive learning rate methods against more complex
adaptive algorithms like Adam and RMSprop. By implementing SGD within residual and dense
architectures, this study aims to identify whether a consistent, manual learning rate schedule can provide
better generalization for mental health classification compared to automated scaling, an analysis that is often
missing in previous student depression studies.

2.11 Root Mean Squared Propagation (RMSprop)

RMSprop, short for Root Mean Squared Propagation, functions as an optimization algorithm designed
to address the vanishing and exploding gradient problems commonly encountered in deep learning. It
adaptively modifies each parameter’s learning rate by normalizing it using the exponential moving average of
the squared derivatives. This approach stabilizes and improves the efficiency of parameter updates, such as
weights (W) and biases (B) [44].

For instance, this approach computes a weighted average of the parameter squares [45], as shown in
equations 4-5.

AWi= B x AWi + (1 — B) x Wi? 4)
AWj = B x AWj + (1 — B) x Wj? (5)

In this case, the momentum hyperparameter B, is a value between 0 and 1. The formula changes the
parameter once the average value has been updated [45], as shown in equations 6-7.

Wi
W = W — learning rate X — 6
8 V(AWi) ©)
B = B — learning rate X —— 7
8 VW) )

Since smaller gradient updates (AW1i) lead to more significant weight changes, while larger updates
(AWj) limit drastic parameter modifications, RMSProp effectively balances the step sizes during training.
RMSprop was strategically selected for its ability to stabilize gradient fluctuations in the student mental
health dataset. By normalizing the moving average of squared gradients, the model is expected to achieve
more consistent convergence and potentially improve classification accuracy beyond the conventional
optimization methods used in earlier studies.

2.12 Adaptive Moment Estimation (Adam)

Adam (Adaptive Moment Estimation) is an adaptive optimization algorithm developed to address the
challenges of optimizing stochastic gradient-based objective functions [46]. It combines momentum methods
with an adaptive learning rate adjustment mechanism, enhancing both the stability and the speed of
convergence during training [47]. By leveraging estimates of the mean (first moment) and the variance
(second moment), Adam effectively adjusts a unique learning rate per parameter based on recent and
historical gradient values [46].

The algorithm combines RMSProp and momentum to reduce vertical oscillations during training,
resulting in faster convergence on minibatch gradients [48]. In practice, Adam introduces two key
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parameters, 1, and B2, which control the exponential decay rates of the first and second moment estimates,
respectively [46][49]. Common default values for these parameters are 0.9 for 1 and 0.999 for B2 [46].
The parameter update formula for Adam can be expressed as follows, as shown in equations 8-12.
1. Calculation of the first and second moments:

me = By me+ (1— By 8 (8)
Ve = Brerve+ (1— Bro)- gzt 9)

2. Bias correction for the first and second moments:

~ my
mg = ———
C1-B, (10)
~ Vi
Vi =T—%r 11
1, (11)
3. Parameter update:
M
Bty1 =6 — e € (12)

0, denotes the variable being tuned during optimization, while m, and v, denote the gradient’s
estimated mean and variance, in that order. Corrected versions of the first and second moment estimates are
represented by i, and V.. Here, 1 is the learning rate, and e, acts as a minor constant to ensure numerical
stability in updating weights [48]. In this research, Adam is incorporated into a systematic evaluation
framework to provide a robust comparison against other adaptive optimizers. Unlike previous studies that
often rely on a single default optimizer, the inclusion of Adam aims to verify whether its momentum-based
stability is more effective than RMSprop or SGD when applied to modern residual MLP architectures for
mental health classification.

2.13  Confusion Matrix

A crucial part of building a successful machine learning (ML) model is evaluating its performance.
Predictive models are commonly assessed using performance metrics derived from the confusion matrix [50].
This matrix serves as a standard evaluation tool that reflects the classification results, helping to determine
the effectiveness of the machine learning model employed [51]. Performance metrics such as accuracy,
precision, and recall are calculated from the confusion matrix for each tested method to obtain reliable
evaluation results. Additionally, the confusion matrix is widely used to assess the performance of ML
models. Figure 2 illustrates the confusion matrix diagram [52].

Predicted
f A !
Positive Negative
Positive | True L
ositive negative
Actual &
Negative False True
g positive negative

Figure 2. Confusion Matrix Diagram [42]

Accuracy, precision, recall, specificity, and F1 score are metrics derived from the confusion matrix.
The formulas for these metrics are derived during the calculation process [52] [54], can be seen in equations
13-17.
1. Accuracy: A measure of the proportion of correct predictions out of the total data.

(TP+TN)

Accuracy= ——
y (Tp+TN+FP+FN)

(13)
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2. Precision: Indicates how accurate the model is in making positive predictions, representing the
percentage of true positive predictions among all positive predictions.

TP

Precision = TiFP) (14)
3. Recal: Measures the model's ability to identify all actual positive cases in the data.
_ TP
Recal = Tp+FN) (15)

4. Specificity: Measures the model’s ability to correctly identify all actual negative cases in the data.

TN
(TN+FP)

Specificity = (16)
5. F1 - Score: The harmonic mean of precision and recall, providing a balanced measure of the model’s
accuracy in terms of both precision and positive detection.

_ 2TP
Fl1—Score = TPt P a7

3. RESULTS AND DISCUSSION

To identify the best model combination for depression classification, six configurations of Multi-
Layer Perceptron (MLP) models were implemented, comprising three architectures (DenseNet, ResMLP, and
ResNet) and three optimizers (Adam, SGD, and RMSprop), on a dataset of students exhibiting depressive
symptoms. After undergoing preprocessing and data splitting, each model was trained and tested, then
evaluated using four key performance metrics: accuracy, precision, recall, and F1-score. The selection of
these metrics ensures a comprehensive assessment, where recall is particularly critical in a mental health
context to minimize false negatives ensuring that students who are actually depressed do not go undetected.

3.1. Preprocessing Data

The initial step in this study involved data preprocessing, including feature selection using the Chi-
Square method and normalization via Min-Max Scaling. Feature selection aimed to identify the most relevant
attributes related to depression status, such as age, gender, financial stress, sleep patterns, and family history
of mental disorders. Normalization was performed to scale all features to the range [0, 1].

The processed dataset was split using the Hold-Out method with an 80:20 ratio, with 80% allocated to
training and 20% to testing. This split was done randomly while maintaining balanced class proportions. The
models employed were Multi-Layer Perceptrons (MLP) with three architectures: DenseNet, ResMLP, and
ResNet. Each architecture was combined with three optimizers, Adam, SGD, and RMSprop, resulting in nine
model combinations ready for evaluation. The evaluation aimed to assess model performance in classifying
students’ depression status based on the prepared data. Table 1 is the data used.

Table 1. Data
Have you ever . . Family
Age Gender had suicidal Wo:'k/Study FIST ncial History of Depression
thoughts? ours ress Mental IlIness
33 Male Yes 3.0 1.0 No 1
24 Female No 4.0 2.0 Yes 0
31 Male No 9.0 1.0 Yes 0
28 Female Yes 4.0 .. 5.0 Yes 1
25 Female Yes 1.0 1.0 No 0
29 Male No 4.0 1.0 No 0
30 Male No 1.0 2.0 No 0

3.2.  DenseNet
The evaluation results for the MLP model with the DenseNet architecture demonstrated strong
performance across the various optimizers used in this classification task (see Table 2).

Table 2. DenseNet Architecture Result

Architecture Optimizer Evaluation Results
DenseNet Adam optimizer Precision 83.36

Depression Classification in University Students using... (Azzahra et al, 2026) 157



ISSN(P): 3024-921X | ISSN(E): 3024-8043

Avrchitecture Optimizer Evaluation Results
Recall 82.57
F1-Score 82.89
Accuracy 83,52
Precision 83.24
- Recall 82.83
SGD optimizer F1-Score 83.01
Accuracy 83,55
Precision 81.34
- Recall 82.18
RMSprop optimizer F1-Score 81.32
Accuracy 81,47
Confusion Matrix (Adam) Confusion Matrix (RMSprop) Confusion Matrix (SGD)

250

Actual
Actual
Actual

- 150

Predicted Predicted Predicted

Figure 3. Confusion Matrix Figure 4. Confusion Matrix Figure 5. Confusion Matrix
DenseNet-Adam DenseNet-RMSprop DenseNet-SGD

Table 2 shows that the SGD optimizer achieves the highest accuracy (83.55%) and F1-Score (83.01%)
for this architecture. Figures 3,4,5 are confusion matrices, specifically, the Confusion Matrix in Figure 5
reveals that DenseNet-SGD correctly identified 2,830 depressed instances, outperforming DenseNet-
RMSprop, which showed a significant drop in accuracy to 81.47%. This 2.08% performance gap suggests
that, while DenseNet is flexible, standard gradient descent is more effective at navigating its loss landscape
for this specific tabular dataset than adaptive RMSprop.

3.3. ResMLP
The evaluation results of the ResMLP architecture demonstrated consistent performance and slightly
outperformed DenseNet across most metrics.

Table 3. ResMLP Architecture Result

Avrchitecture Optimizer Evaluation Results
Precision 82.42
Adam optimizer Recall 82.12
F1-Score 82.26
Accuracy 82,80
Precision 83.38
- Recall 82.94
ResMLP SGD optimizer F1-Score 83.13
Accuracy 83,68
Precision 82.27
. Recall 82.75
RMSprop optimizer F1-Score 82.44
Accuracy 82,76

Table 3 shows that ResMLP achieves its best performance when combined with the SGD optimizer,
attaining the highest Fl1-score and accuracy values of 83.68%, outperforming other combinations. The
performance differences among optimizers within this architecture are relatively small, indicating the
model’s stability against changes in optimization methods. Nevertheless, SGD remains the most optimal
choice for ResMLP in this classification task. Figures 6, 7, and 8 show that the ResMLP model with the SGD
optimizer achieves the highest number of correct predictions among Adam and RMSprop. This demonstrates
that the combination of ResMLP and SGD delivers the best and most consistent classification performance.
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Figure 6. Confusion Matrix Figure 7. Confusion Matrix Figure 8. Confusion Matrix
ResMLP-Adam ResMLP-RMSprop ResMLP-SGD
3.4. ResNet

The ResNet architecture within the MLP model also demonstrated competitive evaluation results
across the three optimizers tested.

Table 4. ResNet Architecture Result

Avrchitecture Optimizer Evaluation Results

Precision 82.84

- Recall 82.32

Adam optimizer F1-Score 8254

Accuracy 83,12

Precision 83.39

. Recall 83.08

ResNet SGD optimizer F1-Score 83.22

Accuracy 83,73

Precision 83.98

. Recall 82.67

RMSprop optimizer F1-Score 8313

Accuracy 83,86
Confusion Matrix (Adam) Confusion Matrix (RMSprop) Confusion Matrix (SGD)

Predicted ’ Predicted ' pPredicted
Figure 9. Confusion Matrix Figure 10. Confusion Matrix Figure 11. Confusion Matrix

ResNet-Adam ResNet-RMSprop ResNet-SGD

Table 4 illustrates that the combination of ResNet with RMSprop yields the highest accuracy of
83.86%, although its recall score is slightly lower than that of SGD. Overall, both SGD and RMSprop
outperform Adam. The consistently high performance of ResNet indicates the effectiveness of the residual
architecture in enhancing classification accuracy. Furthermore, Figures 9, 10, and 11 show that ResNet paired
with RMSprop achieves the highest number of correct predictions compared to Adam and SGD. This
demonstrates that the combination of ResNet and RMSprop delivers the best and most accurate classification
performance on the test data.

3.5.  Architecture Comparison

Figure 12 presents the accuracy results of nine Multi-Layer Perceptron (MLP) model combinations
formed from three network architectures: DenseNet, ResMLP, and ResNet, paired with three types of
optimizers: Adam, SGD, and RMSprop. The combination of ResNet architecture with the RMSprop
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optimizer achieved the highest accuracy of 83.86%, followed by ResNet + SGD with 83.73%, and ResMLP
+ SGD with 83.68%. These results indicate that RMSprop and SGD optimizers can deliver competitive
classification performance when paired with the appropriate architecture. Meanwhile, other combinations,
such as DenseNet + SGD (83.55%) and DenseNet + Adam (83.52%), also demonstrated fairly good
accuracy. The DenseNet with RMSprop combination achieved the lowest accuracy of 81.47%. This variation
in outcomes highlights the significant impact of optimizer choice on model accuracy, underscoring the
importance of selecting an appropriate optimizer to enhance classification performance for student depression
detection.

Accuracy Comparison of Models and Optimizers

85

Accuracy (%)

3 & & 5
"‘,\, & s ‘7.;;6

Model & Optimizer

Figure 12. Comparison Result

This study demonstrates that the combination of architecture and optimizer significantly influences
model performance in classifying depression among students [10][11][17]. Although all tested Multi-Layer
Perceptron (MLP) models showed good performance, the ResNet architecture combined with the RMSprop
optimizer yielded the highest accuracy, followed by ResNet + SGD and ResMLP + SGD combinations.
Similarly, previous research by Desai (2020) [17] found that SGD is more effective than other optimizers in
managing large and complex datasets, despite requiring higher computational resources. This indicates that
the consistent use of the SGD optimizer delivers superior results compared to Adam and RMSprop,
especially in handling data with complex characteristics such as student depression symptoms [14][17].

The superior performance of ResNet can be attributed to its "skip connections,” which allow the
network to learn identity mappings, effectively mitigating the vanishing gradient problem. This allows the
model to refine its weights more deeply without losing information from earlier layers, a crucial advantage
when dealing with complex psychological features. Regarding optimizers, the consistent success of SGD and
RMSprop over Adam in this study suggests that for tabular mental health data, simpler or specifically tuned
adaptive rates may be more effective. While Adam is often preferred for speed, it can sometimes converge to
suboptimal local minima in non-image datasets. This study highlights that the synergy between a residual
structure and an adaptive learning rate (RMSprop) or a steady momentum-based descent (SGD) is key to
maximizing accuracy.

The study also emphasizes the importance of selecting the appropriate model configuration, not only
in terms of network architecture but also in the optimization algorithm used [11][17]. These findings align
with prior theories and studies, which state that optimal model structure and training methods are crucial for
the success of machine learning-based classification systems, particularly in mental health issues [10][14].
Future research could focus on testing models on larger or multi-class datasets, as well as applying data
balancing techniques to improve model sensitivity in detecting cases of depression ranging from mild to
severe. For future research, these findings can be refined by incorporating data balancing techniques such as
SMOTE to improve model sensitivity to severe cases, which are often underrepresented. Additionally,
expanding the dataset to include longitudinal data would allow the MLP models to move beyond static
classification into time-series prediction of mental health trends.

The results of this study demonstrate that the architectural configuration and optimization strategy are
pivotal in achieving high accuracy for mental health classification . The peak accuracy of 83.86% achieved
by the ResNet architecture with the RMSprop optimizer represents a significant improvement over the 78%
accuracy reported in prior studies utilizing standard MLP models for mental health prediction . This
improvement can be attributed to the structural advantages of ResNet; specifically, its use of shortcut
connections allows the model to learn identity mappings, which effectively mitigates the vanishing gradient
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problem often encountered in deep networks . Furthermore, the success of the RMSprop optimizer in this
combination suggests that its ability to adaptively adjust learning rates based on an exponential moving
average of squared derivatives is highly effective for the high variability observed in student psychological
datasets.

Interestingly, the SGD optimizer showed the most consistent performance across all tested
architectures, yielding results above 83.5% for DenseNet, ResMLP, and ResNet. This finding aligns with
Desai's (2020) theories, which posit that SGD is particularly robust for managing complex datasets despite
requiring more computational iterations. In contrast, the DenseNet architecture combined with RMSprop
achieved the lowest accuracy of 81.47%, indicating that, without residual connections, the adaptive nature of
RMSprop may lead to suboptimal convergence on tabular datasets with specific feature distributions.

The practical implication of these findings is that institutions can leverage specific residual-based
MLP configurations to build more reliable early-detection systems. A strength of this research is the
systematic grid evaluation of nine distinct combinations, providing a clear benchmark for future Al-powered
mental health screening tools. However, this study is limited by the small size of the dataset (1,025 entries)
and its focus on binary classification. To further refine these models, future research should implement data
balancing techniques such as SMOTE to better detect severe but underrepresented cases of depression.
Additionally, transitioning from static datasets to longitudinal data would allow for time-series predictions,
enabling proactive interventions as a student’s mental health state fluctuates over time.

4, CONCLUSION

This study successfully achieved its primary objective of evaluating the performance of various MLP
architectures and optimization algorithms to identify the most effective configuration for student depression
classification. Based on the evaluation results of nine Multi-Layer Perceptron (MLP) model combinations,
formed from three network architectures (DenseNet, ResMLP, and ResNet) and three optimizers (Adam,
SGD, and RMSprop), it can be concluded that the combination of ResNet with the RMSprop optimizer
delivers the best performance in classifying depression among students. This combination achieved the
highest accuracy of 83.86%. The results directly address the research question by demonstrating that
residual-based architectures, such as ResNet and ResMLP, provide superior stability and accuracy when
paired with RMSprop or SGD compared to standard DenseNet structures. These findings imply that the
synergy between architectural design and optimization is a critical factor in developing reliable Al-powered
early-detection systems in academic settings. Despite these meaningful results, a notable weakness of this
study is its reliance on a dataset of 1,025 records and its focus on binary classification (Yes/No), which may
not fully capture the clinical nuances of varying depression severity levels. To address these limitations,
future research should focus on testing models on larger, multi-class datasets to improve the detection of
depression across mild to severe levels. Furthermore, incorporating data-balancing techniques such as
SMOTE and using longitudinal data are recommended to move beyond static classification toward more
dynamic, sensitive time-series predictions of mental health trends. These improvements will be essential for
refining machine learning-based screening tools into more proactive and accurate intervention platforms for
university students.
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