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Abstract  

 
Depression among university students is a critical mental health concern, often exacerbated by academic pressure and 

social adaptation. While prior studies have utilized Multi-Layer Perceptron (MLP) models to achieve up to 78% 

accuracy, the effectiveness of these systems remains highly sensitive to architectural design and optimization strategies. 

To address this gap, this study systematically evaluates the performance of modern MLP architectural variants including 

DenseNet, ResMLP, and ResNet paired with SGD, Adam, and RMSprop optimizers. Using a dataset of 1,025 student 

records, the methodology integrates Chi-Square feature selection and Min-Max normalization, followed by an 80:20 

Hold-Out validation. Results demonstrate that the ResNet-RMSprop synergy yields a superior accuracy of 83.86%, 

significantly outperforming traditional MLP benchmarks . By identifying the optimal combination of deep learning 

structures and optimization algorithms, this research provides a more robust and precise technical foundation for AI-

driven early detection systems in academic settings. 

 

Keywords: Classification, Hold-Out Validation, Mental Health, Multi-Layer Perceptron, Student Depression. 

 

 

 

1. INTRODUCTION 

In recent years, mental health issues, particularly depression, have garnered growing global concern 

[1]. According to a WHO report, over 350 million individuals worldwide are affected by depression, with the 

numbers increasing annually [2]. Depression frequently co-occurs with anxiety disorders, with approximately 

40–60% of individuals suffering from major depressive disorder also experiencing anxiety-related symptoms 

[2]. His condition is often characterized by prolonged sadness, a loss of interest in activities, and diminished 

emotional and physical functioning [3]. Common physical symptoms include disrupted sleep patterns, 

appetite loss, and fatigue, while cognitive symptoms may include slowed thinking, suicidal ideation, and 

excessive guilt [4]. 

University students are among the groups most vulnerable to mental health issues, including 

depression. The academic workload, social challenges, and the need to adapt to a new university environment 

contribute significantly to their mental health struggles [5].  Research by Meda et al. (2023) [6] revealed a 

high prevalence of depression among students, with about 17–22% exhibiting severe symptoms. More recent 

studies, by Mumenin et al. (2024) [7] have reported even higher rates of depression in low- and middle-

income countries: 43.7% of students in India, 40.9% in Pakistan, and 52.2% in Bangladesh have shown 

depressive symptoms. Hence, it is crucial to develop technology-based early detection systems to enable 

timely and targeted interventions  [8] 

To predict depressive states, various approaches have been implemented, including Machine Learning 

(ML) and Deep Learning (DL) algorithms. Among the commonly used algorithms for depression 
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classification is the Multi-Layer Perceptron (MLP) [9]. MLP is an artificial neural network composed of 

several fully connected layers of neurons [10]. According to Chung et al. (2022) [4], MLP has demonstrated 

an accuracy of up to 78% in predicting mental health disorders among children and an AUC of 88% in 

detecting prenatal depression [10]. Due to its capability to learn complex data patterns, MLP is considered a 

strong candidate for symptom-based psychological classification tasks [11]. However, most existing studies 

focus on standard MLP implementations, without exploring specialized architectural variants or their 

interactions with different optimization strategies, leaving a significant gap in identifying the most efficient 

configuration for student-specific data.  

However, the performance of MLP models heavily depends on both the architectural design and the 

choice of optimization algorithms. Poor architectural decisions may lead to overfitting or weak generalization 

capabilities [12] while unsuitable optimizers can slow down training or prevent optimal performance [13]. A 

major challenge in building effective MLP models lies in identifying the right combination of architecture 

and optimizer to ensure accuracy, stability, and interpretability [14]. While previous research has often 

explored architectural models and optimization techniques separately, a comprehensive evaluation comparing 

modern architectures such as DenseNet, ResMLP, and ResNet across multiple optimizers (SGD, RMSprop, 

and Adam) remains largely unexplored in the context of student depression. This study addresses this gap by 

providing a systematic comparative analysis of these nine combinations. The novelty of this research lies in 

identifying the optimal synergy between residual-based architectures and adaptive optimization to enhance 

the sensitivity and accuracy of early mental health screening tools.  

Several studies have proposed architectural variants such as Dense Layers, ResMLP, and ResNet. 

Dense layers are easy to implement but prone to overfitting without regularization techniques such as dropout 

or L2 regularization [10]. ResMLP incorporates residual learning to mitigate performance degradation in 

deeper networks [15]. Originally designed for image recognition tasks, ResNet utilizes shortcut connections 

between layers to enhance learning in very deep networks. Although primarily used for image data, ResNet 

has also yielded promising results with tabular datasets (Ravid Shwartz-Ziv, Pfister & Sercan, n.d.) 

In addition to architectural choices, the selection of optimizers plays a key role in efficient model 

training. Three widely used optimizers in MLP training are Stochastic Gradient Descent (SGD), RMSprop, 

and Adam [17], [18]. While SGD is a foundational optimizer, it is sensitive to learning rates and often 

requires longer training times [13]. RMSprop offers better stability when dealing with data with high 

variability and is frequently used in DL models that require adaptive learning [19]–[21]. Adam has gained 

popularity for combining the advantages of both SGD and RMSprop, enabling faster, more stable training 

[10]. 

While previous research has explored architectural models and optimization techniques separately, a 

comprehensive evaluation comparing different architectures (Dense, ResMLP, and ResNet) and optimizers 

(SGD, RMSprop, and Adam) remains largely unexplored, particularly in the area of student depression 

classification. Accordingly, this research focuses on assessing how different combinations of MLP 

architectures and optimization algorithms perform in identifying depression levels among university students. 

The assessment uses evaluation metrics suitable for imbalanced data classification, such as accuracy, 

precision, recall, and F1-score. The outcomes are anticipated to provide data-driven insights that could help 

build AI-powered systems for the early identification of mental health issues. 

 

2. MATERIAL AND METHOD  

The methodological process begins by preparing the dataset, including selecting relevant features and 

applying normalization techniques. Afterward, the data is partitioned using an 80:20 Hold-Out Validation 

strategy. Distinct from conventional methodologies that typically focus on single-model optimization, the 

approach illustrated in Figure 1 implements a systematic grid-evaluation framework. The portion allocated 

for training is employed to build the MLP model using two primary approaches: employing different 

optimization algorithms (Adam, SGD, RMSprop) and implementing alternative network architectures 

(ResNet, DenseNet, ResMLP). By integrating specialized architectures like ResNet and ResMLP which are 

traditionally used for image data into a tabular data classification task, this methodology offers a novel 

perspective on improving screening accuracy. The performance of each training outcome is evaluated based 

on accuracy and is further analyzed comparatively to identify the most effective configuration before 

conclusions. 

 

2.1. Data collecting 

The dataset utilized in this study is the "Student Mental Health Dataset," sourced from the Kaggle 

platform. It contains information related to mental health issues among university students, with a particular 

focus on symptoms of depression. The dataset comprises 14 variables, including demographic data (such as 

age and gender), lifestyle habits, and daily routines (such as sleep patterns and exercise frequency). In total, 

there are 1,025 data entries. Additionally, the dataset includes mental health indicators that may influence the 

severity of depression among students. 
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The target variable in this dataset is a categorical attribute named "Depression," which is divided into 

two classes: "Yes" (indicating the student is experiencing depression) and "No" (indicating the student is not 

experiencing depression). This dataset is utilized to develop a predictive model aimed at identifying signs of 

depression in students through the application of machine learning techniques, specifically focusing on the 

Multi-Layer Perceptron (MLP) and its architectural variations. 

 

 

Figure 1. Research Methodology 
 

2.2. Pre-processing Data 

Before analyzing the data using machine learning models, a procedure known as data preprocessing is 

carried out, this step aims to clean and modify the dataset to ensure it is suitable and optimized for the 

training process [22]. The goal is to minimize potential errors or misinterpretations during data input by 

removing missing or inconsistent entries and reducing the number of attributes used in the classification 

process [23]. 

To improve model performance and reduce data dimensionality, this study applies the Chi-Square (χ²) 

method as a feature selection technique. The Chi-Square test assesses the association between each feature 

and the target class, enabling the selection of statistically significant features [24]. In this research, the 

fundamental formula used for the Chi-Square calculation is equation 1. 

 

χ2(ti, cj) =  
N (AD −  CB)2

(A + C)(B + D)(A + B)(C + D)
 (1) 

 

In the formula, value A represents the number of data entries in the class cj that contain the featureti, 

while B is the number of entries outside the classcj that also contain that feature. Value C denotes the number 

of entries in the class cj that do not include feature ti, and D is the count of entries outside class cj that lack 

the feature. The total number of entries in the dataset is represented by N. The output of this computation 

indicates the strength of association between a given feature and the target class, which is then used to rank 

and select the most relevant features.  

The selection of the Chi-Square method in this study is strategically based on its proficiency in 

handling the categorical data that dominates this mental health dataset. Unlike dimensionality reduction 

techniques such as PCA, which transform original features into uninterpretable components, Chi-Square 

preserves the original attributes like financial stress and family history. This provides a novel contribution in 

terms of model transparency, ensuring that the most influential features are statistically identified before 

being processed by complex architectures—a step often overlooked in conventional studies. 

Subsequently, a normalization step is performed to harmonize the range of all feature values, 

preventing any single feature from disproportionately influencing the model's learning [26]. In this study, the 

Min-Max Scaling technique is adopted, which scales the data values to fall within a defined interval, 

typically 0 to 1. The transformation using Min-Max Scaling can be represented mathematically as equation 2. 

 

N′ =
N − min (n)

(n)  − min (n)
 (2) 

 

In the Min-Max normalization method, the adjusted value N′ is calculated by taking the original data 

point N, subtracting min (n) (the minimum value of the feature), and then dividing the result by the range 
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calculated from (n)  minus min (n). This transformation yields values that fall within a defined range, 

generally from 0 to 1 [27]. 

 

2.3. Splitting data 

The next stage in the model development process is dataset splitting, which is vital for providing an 

unbiased assessment of the model's effectiveness. In this study, the Hold-Out method is used as a widely 

adopted data-splitting approach in machine learning due to its simplicity and effectiveness for providing an 

initial performance assessment of the model. 

The Hold-Out technique splits the dataset into two parts: a majority for training and a smaller portion 

for testing. In this research, an 80:20 split is used, with 80% dedicated to training and validation, and the 

remaining 20% reserved for testing. The split is performed randomly while maintaining class-balanced 

distributions across both subsets. 

The Hold-Out approach is chosen for its ability to provide a low-bias performance estimate with 

minimal computational complexity, making it particularly suitable for datasets of medium to large size [28]. 

To support efficient training and testing, the partitioned data is organized into separate directories, facilitating 

further data handling and preventing data leakage between subsets. 

 

2.4. Student Depression 

Depression refers to a psychological condition marked by continuous feelings of sadness, loss of 

interest, and a decline in both emotional and physical functioning [3]. Common physical symptoms include 

fatigue, decreased appetite, and sleep disturbances. Individuals with depression may also experience 

cognitive symptoms such as excessive guilt, suicidal thoughts, and difficulty concentrating or making 

decisions [4]. 

Mental health is a critical global issue, especially as university students are particularly vulnerable to 

psychological stress due to the challenges and complexities of academic life. Among students, mental health 

disorders such as anxiety and depression are prevalent and significantly affect social interaction, academic 

performance, and overall well-being [7]. If left unaddressed, depression can lead to severe consequences such 

as academic failure, dropping out, or even self-harm and suicide [9]. A study conducted by Meda et al. [6], 

involving 1,388 participants, revealed that nearly 20% of students reported experiencing severe depressive 

symptoms or suicidal ideation, with financial hardship being a significant contributor to their emotional 

distress. 

 

2.5. Machine Learning 

Machine Learning (ML), a branch of Artificial Intelligence (AI), enables machines to learn from data 

and make predictions or decisions autonomously [29]. It leverages statistical algorithms to detect patterns in 

datasets and automatically improves its performance over time [30]. Today, ML has been widely 

implemented across domains such as finance, healthcare, industrial production, and psychological research. 

Currently, machine learning techniques are increasingly utilized in fields such as robotics, computer 

vision, language assistants, medical diagnostics, marketing, industrial operations, and scientific research. 

Lately, ML approaches have also been used in designing new material alloys and the prediction of their 

properties [31][32] 

In the medical domain, ML algorithms prove valuable in analyzing patient data to support clinical 

decision-making. ML encompasses several learning paradigms, such as classification, regression, and 

clustering, each suited to different types of problems and capable of yielding diverse outcomes depending on 

the context [32]. 

. 

2.6. Multi-Layer Perceptron (MLP) 

The Multi-Layer Perceptron (MLP), a form of artificial neural network (ANN), is often labeled a basic 

or 'vanilla' neural network due to its simple structure, modeled after the human brain's neural systems, which 

are composed of billions of linked neurons [33]. An MLP comprises three main types of layers: an input 

layer, several hidden layers, and an output layer. Each of these layers includes neurons interconnected 

through weighted links, and each neuron applies an activation function to process incoming signals [34] 

The prediction process in an MLP is carried out through forward propagation, in which signals flow 

progressively from the input to the output layer. Neurons in the hidden layers use non-linear functions such 

as ReLU or sigmoid to transform inputs. Key parameters that impact how effectively the MLP model 

performs include the count of hidden nodes the selection of activation functions, and the training techniques 

like backpropagation and the gradient descent method. The mathematical expression for the output of the 

MLP model is presented below [35], which can be seen as equation 3. 
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y = δ2 (∑

m

i=1

( wi
(2)

δ1hgjh(x)) + b(2)) X =  ∑

n

j=1

(XjWxj
(1)

) + b(1) ) (3) 

 

In the given equation, y denotes the prediction vector produced by the MLP model, which is computed 

based on the input vector xj, representing the feature set of a data sample. The weights connecting the input 

layer to the hidden layer are represented as w(1), while the weights linking the hidden layer to the output 

layer are denoted as w(2). The activation function applied in the hidden layer is symbolized by δ1, and the 

activation function used in the output layer is represented by δ2. 

Bias terms are included for each layer, which b(1) is assigned to the hidden layer and b(2) is 

associated with the output layer. The parameters m and n indicate the number of observations (examples) and 

the corresponding quantity of input attributes in the dataset, respectively. This architecture enables the MLP 

to capture intricate non-linear patterns linking the input data to the output results, making it widely applicable 

for use in solving either classification or regression problems. 

Through training, MLP adjusts its weights and biases to minimize prediction error, allowing it to 

extract meaningful patterns from data. Due to its effectiveness in modeling complex and non-linear data, 

MLP has been extensively used in diverse domains, including tabular data processing, image analysis, and 

natural language processing [35]. 

 

2.7. Dense Layer 

The dense layer, also known as a fully connected layer, is a key element in neural networks, where 

each unit connects to all neurons in both the preceding and succeeding layers. This structure facilitates 

learning complex feature representations through a process of linear mapping followed by a non-linear 

function such as ReLU or sigmoid. Dense layers are widely employed in tasks such as pattern recognition, 

image categorization, and Natural Language Processing (NLP). 

In medical prediction tasks, such as diagnosing diabetes, incorporating dense layers into neural 

network architectures significantly enhances prediction accuracy and model efficiency. When combined with 

validation techniques such as K-fold cross-validation and hyperparameter tuning, models can learn more 

effectively from data, leading to improved predictive performance [36]. 

To further enhance generalization, dense layers are often integrated with regularization techniques 

such as dropout. As demonstrated by the DenseNet architecture, dense connectivity strengthens feature 

propagation, reduces parameter counts, and addresses vanishing gradients in deep networks [37]. 

 

2.8 Residual Multi-Layer Perceptron (ResMLP) 

Residual Multi-Layer Perceptron (ResMLP) is a deep learning architecture composed entirely of MLP 

layers and residual connections, without convolutional or attention mechanisms. Originally proposed by 

Touvron et al. (2021) [38], ResMLP offers a streamlined yet competitive alternative for image classification 

tasks. The model processes input data as patches using linear transformations and feedforward layers, with 

residual connections to enhance training stability. In this study, ResMLP is adapted for tabular data to 

explore its feature-extraction capabilities without requiring complex attention mechanisms, thereby offering 

higher computational efficiency for depression detection while mitigating the vanishing gradient problem 

through its residual blocks. 

An advancement of this architecture is E-ResMLP+, a hybrid model combining the strengths of 

ResMLP and EfficientNetV2b0. Designed specifically for wheat species classification, E-ResMLP+ 

leverages EfficientNet's robust feature extraction and ResMLP's straightforward feedforward structure. 

According to the study by Dönmez et al. (2024) [39], this model achieved 98.33% classification accuracy 

without requiring data preprocessing or specialized hardware, demonstrating its effectiveness for high-

accuracy image classification with minimal preprocessing. 

 

2.9 Residual Neural Network (ResNet) 

Residual Neural Network (ResNet) is a deep learning architecture introduced by Kaiming He et al. in 

2015 to address the problem of accuracy degradation in very deep networks through skip connections. 

Research has extensively explored optimizing ResNets to enhance both model efficiency and accuracy, 

particularly for deployment on resource-constrained devices. In the context of this study, the implementation 

of ResNet on tabular student mental health data represents a significant methodological shift. By utilizing 

skip connections, the model ensures that the nuanced psychological indicators identified during 

preprocessing are preserved across deeper layers, preventing the loss of critical information and stabilizing 

the gradient flow during training a common challenge in traditional MLP models.  

One such optimization approach involves reducing start-up latency by pruning channels and residual 

blocks. In [40], a two-stage optimization method was proposed, consisting of approaches for Global 
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Constraints and for reducing start-up latency. This method achieved a latency reduction of 70.40%, 

surpassing the previous method by 13.63% when using only channel pruning, thus allowing immediate 

computation on edge platforms such as desktop CPUs, FPGAs, ARM CPUs, and PULP platforms.ResNet has 

proven highly effective in image recognition tasks and is widely employed for applications like object 

detection in photos, quality assessment, and even signal classification [41].  

 

2.10 Stochastic Gradient Descent (SGD) 

Among the most popular optimizers in machine learning is Stochastic Gradient Descent (SGD), 

particularly effective for large-scale datasets due to its ability to optimize efficiently over multiple epochs, or 

full passes through the training data [42]. 

A recent study, by Alharbi et al. (2025) [43], applied SGD to evaluate sentiment in both Arabic and 

English film critiques, demonstrating its capability to handle linguistic diversity and cultural nuances. It 

yielded accuracy scores of 84.89% on Arabic data and 87.44% on English data, highlighting the algorithm’s 

effectiveness and adaptability. Thanks to its flexibility in adjusting model complexity, SGD is well-suited for 

various types of textual data, including content with spoilers or stylistic variations.SGD is utilized as a 

baseline optimizer to evaluate the performance of non-adaptive learning rate methods against more complex 

adaptive algorithms like Adam and RMSprop. By implementing SGD within residual and dense 

architectures, this study aims to identify whether a consistent, manual learning rate schedule can provide 

better generalization for mental health classification compared to automated scaling, an analysis that is often 

missing in previous student depression studies. 

 

2.11 Root Mean Squared Propagation (RMSprop) 

RMSprop, short for Root Mean Squared Propagation, functions as an optimization algorithm designed 

to address the vanishing and exploding gradient problems commonly encountered in deep learning. It 

adaptively modifies each parameter’s learning rate by normalizing it using the exponential moving average of 

the squared derivatives. This approach stabilizes and improves the efficiency of parameter updates, such as 

weights (W) and biases (B) [44]. 

For instance, this approach computes a weighted average of the parameter squares [45], as shown in 

equations 4-5. 

 

ΔWi =   β ×  ΔWi +  (1 −  β)  ×  Wi² (4) 

  

ΔWj =  β ×  ΔWj +  (1 −  β)  ×  Wj² (5) 

 

In this case, the momentum hyperparameter β, is a value between 0 and 1. The formula changes the 

parameter once the average value has been updated [45], as shown in equations 6-7. 

 

W =  W −  learning rate ×  
Wi

√(ΔWi)
 (6) 

  

B =  B −  learning rate ×  
Wj 

√(ΔWj)
 (7) 

 

Since smaller gradient updates (ΔWi) lead to more significant weight changes, while larger updates 

(ΔWj) limit drastic parameter modifications, RMSProp effectively balances the step sizes during training. 

RMSprop was strategically selected for its ability to stabilize gradient fluctuations in the student mental 

health dataset. By normalizing the moving average of squared gradients, the model is expected to achieve 

more consistent convergence and potentially improve classification accuracy beyond the conventional 

optimization methods used in earlier studies. 

 

2.12 Adaptive Moment Estimation (Adam) 

Adam (Adaptive Moment Estimation) is an adaptive optimization algorithm developed to address the 

challenges of optimizing stochastic gradient-based objective functions [46]. It combines momentum methods 

with an adaptive learning rate adjustment mechanism, enhancing both the stability and the speed of 

convergence during training [47]. By leveraging estimates of the mean (first moment) and the variance 

(second moment), Adam effectively adjusts a unique learning rate per parameter based on recent and 

historical gradient values [46]. 

The algorithm combines RMSProp and momentum to reduce vertical oscillations during training, 

resulting in faster convergence on minibatch gradients [48]. In practice, Adam introduces two key 
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parameters, β₁, and β₂, which control the exponential decay rates of the first and second moment estimates, 

respectively [46][49]. Common default values for these parameters are 0.9 for β₁ and 0.999 for β₂ [46]. 

The parameter update formula for Adam can be expressed as follows, as shown in equations 8-12. 

1. Calculation of the first and second moments: 

 

mt =  β1,t ∙ mt + (1 −  β1,t) ∙ gt 

 

(8) 

 

vt =  β1,t ∙ vt + (1 −  β1,t) ∙ g2
t
 (9) 

 

2. Bias correction for the first and second moments: 

 

m̂t =
mt

1 − β1,t
t  

 

(10) 

v̂t =
vt

1 − β2,t
t  (11) 

 

3. Parameter update: 

 

θt+1 = θt − ηt ∙  
m̂t

√v̂t + ϵ
 ∙ et (12) 

 

θt denotes the variable being tuned during optimization, while mt and vt denote the gradient’s 

estimated mean and variance, in that order. Corrected versions of the first and second moment estimates are 

represented by m̂t and v̂t. Here, ηt is the learning rate, and et acts as a minor constant to ensure numerical 

stability in updating weights [48]. In this research, Adam is incorporated into a systematic evaluation 

framework to provide a robust comparison against other adaptive optimizers. Unlike previous studies that 

often rely on a single default optimizer, the inclusion of Adam aims to verify whether its momentum-based 

stability is more effective than RMSprop or SGD when applied to modern residual MLP architectures for 

mental health classification. 

 

2.13  Confusion Matrix 

A crucial part of building a successful machine learning (ML) model is evaluating its performance. 

Predictive models are commonly assessed using performance metrics derived from the confusion matrix [50]. 

This matrix serves as a standard evaluation tool that reflects the classification results, helping to determine 

the effectiveness of the machine learning model employed [51]. Performance metrics such as accuracy, 

precision, and recall are calculated from the confusion matrix for each tested method to obtain reliable 

evaluation results. Additionally, the confusion matrix is widely used to assess the performance of ML 

models. Figure 2 illustrates the confusion matrix diagram [52]. 

 

 

Figure 2. Confusion Matrix Diagram [42] 

 

Accuracy, precision, recall, specificity, and F1 score are metrics derived from the confusion matrix. 

The formulas for these metrics are derived during the calculation process [52] [54], can be seen in equations 

13-17.  

1. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦: A measure of the proportion of correct predictions out of the total data. 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(TP+TN)

(Tp+TN+FP+FN)
             (13) 
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2. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜n: Indicates how accurate the model is in making positive predictions, representing the 

percentage of true positive predictions among all positive predictions. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜n = 
TP

(Tp+FP)
      (14) 

 

3. 𝑅𝑒𝑐𝑎𝑙:  Measures the model's ability to identify all actual positive cases in the data. 

 

𝑅𝑒𝑐𝑎𝑙 = 
TP

(Tp+FN)
                  (15) 

 

4. 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦: Measures the model’s ability to correctly identify all actual negative cases in the data. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
TN

(TN+FP)
             (16) 

 

5. 𝐹1 – 𝑆𝑐𝑜𝑟𝑒: The harmonic mean of precision and recall, providing a balanced measure of the model’s 

accuracy in terms of both precision and positive detection. 

 

𝐹1 – 𝑆𝑐𝑜𝑟𝑒 =  
2TP

(2Tp+FP+FN)
          (17) 

 

3. RESULTS AND DISCUSSION 

To identify the best model combination for depression classification, six configurations of Multi-

Layer Perceptron (MLP) models were implemented, comprising three architectures (DenseNet, ResMLP, and 

ResNet) and three optimizers (Adam, SGD, and RMSprop), on a dataset of students exhibiting depressive 

symptoms. After undergoing preprocessing and data splitting, each model was trained and tested, then 

evaluated using four key performance metrics: accuracy, precision, recall, and F1-score. The selection of 

these metrics ensures a comprehensive assessment, where recall is particularly critical in a mental health 

context to minimize false negatives ensuring that students who are actually depressed do not go undetected.  

 

3.1. Preprocessing Data 

The initial step in this study involved data preprocessing, including feature selection using the Chi-

Square method and normalization via Min-Max Scaling. Feature selection aimed to identify the most relevant 

attributes related to depression status, such as age, gender, financial stress, sleep patterns, and family history 

of mental disorders. Normalization was performed to scale all features to the range [0, 1]. 

The processed dataset was split using the Hold-Out method with an 80:20 ratio, with 80% allocated to 

training and 20% to testing. This split was done randomly while maintaining balanced class proportions. The 

models employed were Multi-Layer Perceptrons (MLP) with three architectures: DenseNet, ResMLP, and 

ResNet. Each architecture was combined with three optimizers, Adam, SGD, and RMSprop, resulting in nine 

model combinations ready for evaluation. The evaluation aimed to assess model performance in classifying 

students’ depression status based on the prepared data. Table 1 is the data used. 

 

Table 1. Data 

Age Gender 

Have you ever 

had suicidal 

thoughts? 

Work/Study 

Hours 
… 

Financial 

Stress 

Family 

History of 

Mental Illness 

Depression 

33 Male Yes 3.0 … 1.0 No 1 

24 Female No 4.0 … 2.0 Yes 0 

31 Male No 9.0 … 1.0 Yes 0 

28 Female Yes 4.0 … 5.0 Yes 1 

25 Female Yes 1.0 … 1.0 No 0 

29 Male No 4.0 … 1.0 No 0 

30 Male No 1.0 … 2.0 No 0 

 

3.2.  DenseNet 

The evaluation results for the MLP model with the DenseNet architecture demonstrated strong 

performance across the various optimizers used in this classification task (see Table 2). 

 

Table 2. DenseNet Architecture Result 

Architecture Optimizer Evaluation Results 

DenseNet Adam optimizer Precision 83.36 
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Architecture Optimizer Evaluation Results 

Recall 82.57 

F1-Score 82.89 

Accuracy 83,52 

SGD optimizer 

Precision 83.24 

Recall 82.83 

F1-Score 83.01 

Accuracy 83,55 

RMSprop optimizer 

Precision 81.34 

Recall 82.18 

F1-Score 81.32 

Accuracy 81,47 

 

 
 

Figure 3. Confusion Matrix 

DenseNet-Adam 

 
 

Figure 4. Confusion Matrix 

DenseNet-RMSprop 

 
 

Figure 5. Confusion Matrix 

DenseNet-SGD 

  

Table 2 shows that the SGD optimizer achieves the highest accuracy (83.55%) and F1-Score (83.01%) 

for this architecture. Figures 3,4,5 are confusion matrices, specifically, the Confusion Matrix in Figure 5 

reveals that DenseNet-SGD correctly identified 2,830 depressed instances, outperforming DenseNet-

RMSprop, which showed a significant drop in accuracy to 81.47%. This 2.08% performance gap suggests 

that, while DenseNet is flexible, standard gradient descent is more effective at navigating its loss landscape 

for this specific tabular dataset than adaptive RMSprop. 

 

3.3.  ResMLP 

The evaluation results of the ResMLP architecture demonstrated consistent performance and slightly 

outperformed DenseNet across most metrics. 

 

Table 3. ResMLP Architecture Result 

Architecture Optimizer Evaluation Results 

ResMLP 

Adam optimizer 

Precision 82.42 

Recall 82.12 

F1-Score 82.26 

Accuracy 82,80 

SGD optimizer 

Precision 83.38 

Recall 82.94 

F1-Score 83.13 

Accuracy 83,68 

RMSprop optimizer 

Precision 82.27 

Recall 82.75 

F1-Score 82.44 

Accuracy 82,76 

 

Table 3 shows that ResMLP achieves its best performance when combined with the SGD optimizer, 

attaining the highest F1-score and accuracy values of 83.68%, outperforming other combinations. The 

performance differences among optimizers within this architecture are relatively small, indicating the 

model’s stability against changes in optimization methods. Nevertheless, SGD remains the most optimal 

choice for ResMLP in this classification task. Figures 6, 7, and 8 show that the ResMLP model with the SGD 

optimizer achieves the highest number of correct predictions among Adam and RMSprop. This demonstrates 

that the combination of ResMLP and SGD delivers the best and most consistent classification performance. 

 



 

                PREDATECS-03(02): 150-164 

     

 159 

 
Depression Classification in University Students using... (Azzahra et al, 2026) 

 
 

Figure 6. Confusion Matrix 

ResMLP-Adam 

 
 

Figure 7. Confusion Matrix 

ResMLP-RMSprop 

 
 

Figure 8. Confusion Matrix 

ResMLP-SGD 

 

3.4. ResNet 

The ResNet architecture within the MLP model also demonstrated competitive evaluation results 

across the three optimizers tested. 

 

Table 4. ResNet Architecture Result 

Architecture Optimizer Evaluation Results 

ResNet 

Adam optimizer 

Precision 82.84 

Recall 82.32 

F1-Score 82.54 

Accuracy 83,12 

SGD optimizer 

Precision 83.39 

Recall 83.08 

F1-Score 83.22 

Accuracy 83,73 

RMSprop optimizer 

Precision 83.98 

Recall 82.67 

F1-Score 83.13 

Accuracy 83,86 

 

 
 

Figure 9. Confusion Matrix 

ResNet-Adam 

 
 

Figure 10. Confusion Matrix 

ResNet-RMSprop 

 
 

Figure 11. Confusion Matrix 

ResNet-SGD 

 

Table 4 illustrates that the combination of ResNet with RMSprop yields the highest accuracy of 

83.86%, although its recall score is slightly lower than that of SGD. Overall, both SGD and RMSprop 

outperform Adam. The consistently high performance of ResNet indicates the effectiveness of the residual 

architecture in enhancing classification accuracy. Furthermore, Figures 9, 10, and 11 show that ResNet paired 

with RMSprop achieves the highest number of correct predictions compared to Adam and SGD. This 

demonstrates that the combination of ResNet and RMSprop delivers the best and most accurate classification 

performance on the test data. 

 

3.5. Architecture Comparison 

Figure 12 presents the accuracy results of nine Multi-Layer Perceptron (MLP) model combinations 

formed from three network architectures: DenseNet, ResMLP, and ResNet, paired with three types of 

optimizers: Adam, SGD, and RMSprop. The combination of ResNet architecture with the RMSprop 
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optimizer achieved the highest accuracy of 83.86%, followed by ResNet + SGD with 83.73%, and ResMLP 

+ SGD with 83.68%. These results indicate that RMSprop and SGD optimizers can deliver competitive 

classification performance when paired with the appropriate architecture. Meanwhile, other combinations, 

such as DenseNet + SGD (83.55%) and DenseNet + Adam (83.52%), also demonstrated fairly good 

accuracy. The DenseNet with RMSprop combination achieved the lowest accuracy of 81.47%. This variation 

in outcomes highlights the significant impact of optimizer choice on model accuracy, underscoring the 

importance of selecting an appropriate optimizer to enhance classification performance for student depression 

detection. 

 

 

Figure 12. Comparison Result 

 

This study demonstrates that the combination of architecture and optimizer significantly influences 

model performance in classifying depression among students [10][11][17]. Although all tested Multi-Layer 

Perceptron (MLP) models showed good performance, the ResNet architecture combined with the RMSprop 

optimizer yielded the highest accuracy, followed by ResNet + SGD and ResMLP + SGD combinations. 

Similarly, previous research by Desai (2020) [17] found that SGD is more effective than other optimizers in 

managing large and complex datasets, despite requiring higher computational resources. This indicates that 

the consistent use of the SGD optimizer delivers superior results compared to Adam and RMSprop, 

especially in handling data with complex characteristics such as student depression symptoms [14][17]. 

The superior performance of ResNet can be attributed to its "skip connections," which allow the 

network to learn identity mappings, effectively mitigating the vanishing gradient problem. This allows the 

model to refine its weights more deeply without losing information from earlier layers, a crucial advantage 

when dealing with complex psychological features. Regarding optimizers, the consistent success of SGD and 

RMSprop over Adam in this study suggests that for tabular mental health data, simpler or specifically tuned 

adaptive rates may be more effective. While Adam is often preferred for speed, it can sometimes converge to 

suboptimal local minima in non-image datasets. This study highlights that the synergy between a residual 

structure and an adaptive learning rate (RMSprop) or a steady momentum-based descent (SGD) is key to 

maximizing accuracy.  

The study also emphasizes the importance of selecting the appropriate model configuration, not only 

in terms of network architecture but also in the optimization algorithm used [11][17]. These findings align 

with prior theories and studies, which state that optimal model structure and training methods are crucial for 

the success of machine learning-based classification systems, particularly in mental health issues [10][14]. 

Future research could focus on testing models on larger or multi-class datasets, as well as applying data 

balancing techniques to improve model sensitivity in detecting cases of depression ranging from mild to 

severe. For future research, these findings can be refined by incorporating data balancing techniques such as 

SMOTE to improve model sensitivity to severe cases, which are often underrepresented. Additionally, 

expanding the dataset to include longitudinal data would allow the MLP models to move beyond static 

classification into time-series prediction of mental health trends. 

The results of this study demonstrate that the architectural configuration and optimization strategy are 

pivotal in achieving high accuracy for mental health classification . The peak accuracy of 83.86% achieved 

by the ResNet architecture with the RMSprop optimizer represents a significant improvement over the 78% 

accuracy reported in prior studies utilizing standard MLP models for mental health prediction . This 

improvement can be attributed to the structural advantages of ResNet; specifically, its use of shortcut 

connections allows the model to learn identity mappings, which effectively mitigates the vanishing gradient 
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problem often encountered in deep networks . Furthermore, the success of the RMSprop optimizer in this 

combination suggests that its ability to adaptively adjust learning rates based on an exponential moving 

average of squared derivatives is highly effective for the high variability observed in student psychological 

datasets. 

Interestingly, the SGD optimizer showed the most consistent performance across all tested 

architectures, yielding results above 83.5% for DenseNet, ResMLP, and ResNet. This finding aligns with 

Desai's (2020) theories, which posit that SGD is particularly robust for managing complex datasets despite 

requiring more computational iterations. In contrast, the DenseNet architecture combined with RMSprop 

achieved the lowest accuracy of 81.47%, indicating that, without residual connections, the adaptive nature of 

RMSprop may lead to suboptimal convergence on tabular datasets with specific feature distributions. 

The practical implication of these findings is that institutions can leverage specific residual-based 

MLP configurations to build more reliable early-detection systems. A strength of this research is the 

systematic grid evaluation of nine distinct combinations, providing a clear benchmark for future AI-powered 

mental health screening tools. However, this study is limited by the small size of the dataset (1,025 entries) 

and its focus on binary classification. To further refine these models, future research should implement data 

balancing techniques such as SMOTE to better detect severe but underrepresented cases of depression. 

Additionally, transitioning from static datasets to longitudinal data would allow for time-series predictions, 

enabling proactive interventions as a student’s mental health state fluctuates over time. 

 

4. CONCLUSION  

This study successfully achieved its primary objective of evaluating the performance of various MLP 

architectures and optimization algorithms to identify the most effective configuration for student depression 

classification. Based on the evaluation results of nine Multi-Layer Perceptron (MLP) model combinations, 

formed from three network architectures (DenseNet, ResMLP, and ResNet) and three optimizers (Adam, 

SGD, and RMSprop), it can be concluded that the combination of ResNet with the RMSprop optimizer 

delivers the best performance in classifying depression among students. This combination achieved the 

highest accuracy of 83.86%. The results directly address the research question by demonstrating that 

residual-based architectures, such as ResNet and ResMLP, provide superior stability and accuracy when 

paired with RMSprop or SGD compared to standard DenseNet structures. These findings imply that the 

synergy between architectural design and optimization is a critical factor in developing reliable AI-powered 

early-detection systems in academic settings. Despite these meaningful results, a notable weakness of this 

study is its reliance on a dataset of 1,025 records and its focus on binary classification (Yes/No), which may 

not fully capture the clinical nuances of varying depression severity levels. To address these limitations, 

future research should focus on testing models on larger, multi-class datasets to improve the detection of 

depression across mild to severe levels. Furthermore, incorporating data-balancing techniques such as 

SMOTE and using longitudinal data are recommended to move beyond static classification toward more 

dynamic, sensitive time-series predictions of mental health trends. These improvements will be essential for 

refining machine learning-based screening tools into more proactive and accurate intervention platforms for 

university students. 
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