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Abstract

This study aims to comparatively evaluate the performance of different Convolutional Neural Network (CNN)
architectures and optimization algorithms for flower image classification. Three widely used CNN architectures
DenseNet201, InceptionVV3, and MobileNetVV2 are implemented using transfer learning with pre-trained ImageNet
weights and tested with two optimizers, Adam and RMSProp. The experiments are conducted on the Flowers
Recognition dataset consisting of five flower classes: daisy, dandelion, rose, sunflower, and tulip. Image normalization
and data augmentation are applied to improve model generalization, while performance is evaluated using accuracy,
precision, recall, and F1-score. The main contribution of this study lies in a systematic comparison of CNN architectures
and optimizers within a unified experimental framework, which is rarely addressed in previous studies. The results show
that DenseNet201 combined with the Adam optimizer achieves the highest classification accuracy of 90%, followed by
MobileNetVV2 with RMSProp, while InceptionV3 yields the lowest accuracy of 85%. These results confirm that the
research objective is achieved, demonstrating that both CNN architecture and optimizer selection significantly influence
flower image classification performance.
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1. INTRODUCTION

Along with the rapid advancement of computing technology, biodiversity has become an increasingly
important focus in scientific research, particularly in the field of life sciences. Indonesia is recognized as one
of the countries with the highest levels of plant biodiversity in the world, possessing approximately 35,000
species of flowering plants, which represent about 10% of global flowering plant diversity. Despite this
richness, only around 19,232 species have been formally identified and documented [1][2].The ecological,
cultural, and economic significance of these plant species makes their accurate identification essential.
However, recognizing flower species in daily life remains challenging, as traditional identification relies on
morphological characteristics such as color, shape, and structure, which require extensive expertise and time,
and often depend on professional knowledge [3][4].

The wide variety of flower appearances and complex visual patterns makes manual classification
inefficient and impractical for large-scale use. Conventional methods such as consulting experts, using
reference books, or searching online, are time-consuming and unsuitable for rapid or automated identification
[5]. Therefore, there is a strong need for an automated, accurate, and scalable system capable of effectively
classifying flower images. This urgency is further amplified by the increasing availability of digital image
data and the demand for intelligent systems in agriculture, education, and biodiversity conservation [6].

In this context, Convolutional Neural Networks (CNNs) have emerged as a powerful approach for
image classification tasks. CNNs are specifically designed to process visual data and can automatically learn
hierarchical features directly from images, eliminating the need for manual feature extraction [7]. Numerous
studies have demonstrated that CNNs outperform traditional machine learning methods in object recognition
and image classification, thanks to their ability to capture complex spatial patterns and semantic features.
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These advantages make CNNs particularly suitable for flower image classification, where subtle visual
differences between species must be accurately distinguished|[8].

Several previous studies have applied CNNs to flower classification with promising results. Intyanto
(2021) compared two CNN architectures and found that VGG16 achieved an accuracy of 80%,
outperforming a custom-designed CNN model with 62%. Fitriani (2021) implemented a CNN-based flower
classification system using MobileNetV2 and reported that VGG16 achieved an accuracy of 919%][9].
Furthermore, Munandar and Rozi (2024) evaluated VGG16 and NasNetMobile architectures with and
without fine-tuning, showing that NasNetMobile achieved the highest accuracy of 99.15% when fine-tuned.
These studies confirm the effectiveness of CNNs for flower classification; however, most of them focus on a
limited number of architectures or do not systematically compare optimization strategies [10][11].

Despite these advancements, there remains a research gap in the comparative evaluation of multiple
modern CNN architectures combined with different optimization algorithms using a standardized
experimental setup [12][13]. In particular, there is limited research that simultaneously examines the
performance of lightweight, deep, and densely connected architectures on the same dataset while also
analyzing the impact of different optimizers on classification performance. Addressing this gap is crucial to
identifying the most effective and efficient model configuration for practical deployment [14][15].

Therefore, this study aims to evaluate and compare the performance of three widely used CNN
architectures: MobileNetV2, InceptionV3, and DenseNet201. Each architecture is optimized using two
popular optimization algorithms, Adam and RMSprop. Model performance is assessed using accuracy,
precision, recall, and F1-score metrics [16][17]. The dataset is divided using a hold-out validation scheme
with an 80:20 ratio. Unlike previous studies that focused on a single model or lacked systematic comparison,
this research provides a comprehensive evaluation framework to identify the best architecture-optimizer
combination for flower image classification. The findings are expected to contribute to the development of
more accurate, efficient, and practical CNN-based classification systems applicable to agriculture, education,
and biodiversity preservation [18][19][20].

2. MATERIAL AND METHOD
The research process is Data Collection, Data Preprocessing, Data Splitting Process, Deep Learning
Modeling Process, along with Optimizer and Evaluation of the methodology flow model for this research can

be seen in Figure 1.
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Figure 1. Research Methodology

2.1. Data Collection

At the data collection stage in this research, the dataset used comes from an open source, namely the
Kaggle site. This dataset was chosen because it provides a fairly complete collection of flower images and
has been classified into several types of flowers, such as daisy, dandelion, rose, sunflower, and tulip. The
data obtained from this collection stage includes images with various resolutions. All data was used for
training and validation of the CNN model, without involving data from case studies or other institutions. The
use of the Kaggle dataset allowed the research process to be more efficient and provided a consistent
standard of evaluation

2.2.  Processing Data
The next process is preprocessing the X-ray image data by performing image normalization and
augmentation. Image normalization is done by changing the image pixel scale from 0 to 255 to 0 to 1. This
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process is carried out to produce uniform image data. Thus, normalization can allow the model to process
data more stably and also allow model training to be coordinated more quickly. Initially, the raw data still has
different sizes or shapes, therefore, it is important to normalize the data. The data augmentation process aims
to improve the data source so that the diagnostic process is more accurate. The training data carried out
includes rotating random images up to 45 degrees, as well as rescaling the image pixel values to a range of
0.1 by dividing each pixel by 255, flipping the image angle n and horizontally, and filling in empty pixels by
applying the nearest pixel value. As for the test data, there is no augmentation process, only rescaling the
pixel values and dividing the validation data. The next stage in data preprocessing is to determine the batch
size, i.e., the number of image samples generated by the generator each time it is run.

2.3.  Split Data

For the next stage, the dataset is split into training, validation, and test sets. This process is an
important step in preparing the dataset before testing the model. The training, validation, and test data are
split using the Hold-Out technique with a 80:20 ratio. The data is split into separate paths to facilitate the
process. The purpose of the following data division is to ensure that the model built can be evaluated
properly and has good generalization capabilities to new data.

2.4. CNN Architecture Model

In this stage, the model testing process is carried out using a CNN architecture for flower recognition
image classification. This model consists of several main layers that progressively extract and abstract
important features from the image. We will apply DenseNet201, Inception V3, and MobileNetV2, and then
compare the performance of each architectural model. Overall, this CNN architecture is designed to
efficiently and effectively extract image features and achieve high classification accuracy, making it one of
the most agile and successful approaches in image classification research.

1. DenseNet201

DenseNet201 is a deep CNN with 201 layers, known for its dense connections that directly link each

layer to all subsequent layers, enabling efficient feature sharing. Its architecture consists of Dense

Blocks and Transition Layers, with Dense Blocks made up of multiple layers that maintain consistent

output sizes. The network controls channel growth using Bottleneck Layers, Transition Layers, and a

Growth Rate, which helps reduce parameters, prevent overfitting, and lower computational cost. This

makes DenseNet201 especially effective for classifying data with small sample sizes [21].

2. InceptionV3

Inception V3 is a Convolutional Neural Network (CNN) architecture developed by Google as an
improvement over previous Inception models. It enhances computational efficiency and accuracy in
image recognition by using convolution factorization (e.g., replacing 5x5 convolutions with smaller
ones like 3x3 or 1x3 + 3x1). The model includes various Inception modules (Types A, B, and C) to
capture multi-scale features and reduction modules to downsample spatial dimensions efficiently. It
has over 40 modular layers, uses an auxiliary classifier to reduce overfitting, and applies batch
normalization for stability and faster convergence. Its modular design allows for easy customization
[22].

3. MobileNetV2

MobileNetV2 is a lightweight and efficient deep learning architecture developed by Google,
optimized for mobile and resource-constrained environments. It improves upon MobileNetV1 by
offering better performance while maintaining efficiency. The architecture includes a feature extractor
(base layer) and a classifier (upper layer). In this case, the base layer is frozen, and only the upper
layer is trained for binary classification, replacing the original classification layer. MobileNetV2
features an inverted residual structure, enabling high-precision image processing with minimal latency
[23].

2.5.  Optimizers

Optimization algorithms play an important role in steering the training process towards optimal
convergence during the development of deep learning models. Learning rate, which is controlled by the
optimizer, is one of the hyperparameters that greatly affects model performance. After selecting the transfer
learning approach for the CNN model architecture, this research conducted tests with two types of
optimizers, Adam and RMSProp. Both are known to have advantages in speeding up the training process and
improving model accuracy and stability. The Adam optimizer is effective in handling data with different
gradients as it combines the advantages of momentum and adjustable learning speed. RMSProp, on the other
hand, works for datasets that have noise or inhomogeneous characteristics by dynamically adjusting the
learning rate for each parameter. The selection of an appropriate optimizer is critical to the design and use of
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this flower image classification model, as it can affect the convergence speed and final accuracy level of the
built model.
1. Adam
Adam (Adaptive Moment Estimation) is an optimization algorithm that dynamically adjusts each
parameter's learning rate using a combination of RMSprop and momentum techniques. It maintains an
exponential moving average of both the first-order (momentum) and second-order (variance)
gradients, allowing for adaptive momentum and learning rate adjustments. This results in stable
parameter updates, efficient exploration of the parameter space, and bias correction[24]. Adam is
widely used due to its computational efficiency and effectiveness in handling sparse gradients and
noisy data. The following is the mathematical calculation of Adam:

ri+1=ri—wiu® 1/Vdi 1)

At each iteration, using wi = wi = (w/ \/i) updates the learning rate. Adam's RMSprop is reduced,
and RMSProp is combined with Momentum for Adam [25].

2. RMSProp
RMSProp (Root Mean Square Propagation) is an adaptive optimization algorithm that improves
training speed and performance in deep learning. It adjusts the learning rate for each parameter
individually based on the magnitude of recent gradients by maintaining a moving average of squared
gradients. This normalization helps handle nonstationary objectives and sparse gradients, issues
common in deep learning. RMSProp overcomes AdaGrad’s limitation of a diminishing learning rate
and ensures appropriately scaled updates, making it well-suited for deep neural network training[26].

Vaw = B Vaw T (1 - B) - dw? (2)
Vab = B Vapy + (1 = B) - db? 3)
W=W - o = )
b=b—a- V::H (5)

Where B is a hyperparameter, v<sub>dw</sub> and v<sub>db</sub> are the accumulated squared
gradients for weights and biases, dw and db are the gradients, a is the learning rate, and ¢ is a small
value to prevent division by zero.

2.6. Deep Learning Model Evaluation

Model evaluation is an important stage in image classification research, which aims to measure the
extent to which the trained CNN model is able to classify new images accurately. In this study, the evaluation
used a confusion matrix to provide a comprehensive overview of the model's performance across each flower
class. The confusion matrix provides detailed information regarding correct and incorrect predictions in each
class, thus facilitating error analysis. From the confusion matrix, evaluation metrics such as accuracy,
precision, recall, and F1-score are obtained, which are the main indicators in assessing model performance.
Through this evaluation, certain error patterns can be identified that are useful for improving the model
through architectural adjustments, hyperparameter settings, or data augmentation strategies. The entire
evaluation process was conducted using the interest dataset obtained from Kaggle, without reference to a
specific case study.

3. RESULTS AND DISCUSSION

This section presents the results and analysis of flower classification using three CNN architectures:
DenseNet201, InceptionV3, and MobileNetV2, tested with Adam and RMSProp optimizers. The
DenseNet201 with Adam achieved the highest accuracy (90%) and best overall performance, showing that
architecture and optimizer choice significantly affect model effectiveness in flower image classification.

3.1. Data Collection

In this research, using the Flowers Recognition dataset which has 5 classes, namely Daisy, Dandelion,
Rose, Sunflower, and Tulip. This dataset is available on Kaggle as a training dataset for CNN deep learning
research. This dataset is used to be able to identify types of flowers based on the classes in the Flowers
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Recognition dataset. Table 1 is classification of flower recognition and Figure 2 is a visualization of the
dataset used in this study.

Table 1. Classification of Flower Recognition

No Class Data
1. Daisy 764
2 Dandelion 1052
3. Rose 784
4, Sunflower 733
5 Tulip 984
Total 4317

Dandelion

<0

Sunflower

Figure 2. Visualization of Flowers Recognition Dataset

3.2.  Preprocessing

The next stage is data preprocessing, which consists of 2 processes, namely normalization and
augmentation of the image. In the image normalization process, rescale the image pixel values from the range
0-255 to the range 0-1, which aims to make each pixel value have the same data distribution. Then, the
augmentation process in this study aims to add data variations by performing transformations such as image
rotation by 45° and flipping the image horizontally. For random image deviation, it is determined by sliding
angles up to 15%, enlarging random images up to 15%, flipping images vertically and horizontally, and
filling in empty pixels using the closest pixel value. The composition of the augmented data can be seen in
Figure 3.

Figure 3. Augmentation Result

With this augmentation, the resulting images will have various variations in position, orientation, and
scale, aiming to maintain consistency in image quality as seen in Figure 3.1. This process is very beneficial in
improving the model's ability to recognize flower characteristics from different angles and image conditions.

3.3. Data Sharing Proses

The data division used in deep learning is divided into three types: training data, validation data, and
testing data. Training data is used to train the deep learning model to find out the types of flowers, while
validation data serves to evaluate the performance of the model during the training process carried out at the
end of each epoch. Testing data is a separate data set that is not involved in the training or validation process,
which aims to assess the final performance of the deep learning model. Data division is done using the
holdout technique with a ratio of 80:20, where 80% is allocated for training data and 20% for testing data.
Furthermore, the training data is further divided into training data and validation data with a ratio of 80:20,
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which is 80% for training and 20% for validation. The distribution of data division with the holdout
technique can be seen in Table 2.

Tabel 2. Result of 80:20 Hold Out Data Sharing Data

Hold Out 80:20
Class Training Data Validation Data Testing Data
Daisy 611 76 77
Dandelion 841 105 106
Rose 627 78 79
Sunflower 586 73 74
Tulip 787 98 99
Total 3452 430 435

3.4.  Modelling and Visualizing

In this modeling, three popular Convolutional Neural Network (CNN) architectures, namely
DenseNet201, Inception V3, and MobileNetV2, are used to classify flower images into five classes: Daisy,
Dandelion, Rose, Sunflower, and Tulip. All architectures used are pre-trained models without a top
classification layer, so they can be readjusted with custom layers such as GlobalAverage Pooling 2D, Dense
(512, activation='ReLU"), Dropout (25%), and Dense(5, activation='softmax’) as the output layer. The
softmax activation function is used because the classification is performed on five flower classes. The
purpose of adding dropout is to reduce overfitting and improve model generalization.

In the training process, two types of optimizers are used, namely Adam and RMSProp, with a learning
rate of 0.0001 and a batch size of 16. The training process is carried out for 15 epochs, where at each epoch
the model will learn the pattern of the training data and update its weights based on the validation results. The
loss function used is 'categorical_crossentropy' because the classification is multiclass, and the evaluation
metric monitored is accuracy. The training process of each architecture and its optimizer combination can be
seen in Figures 4 to 9, which shows the progress of the model performance during the training and validation
process.

Training and Validation Accuracy Training and Validation Loss

—— Training Loss

—— validation Loss

Accuracy

—— Training Accuracy 03
065 = Validation Accuracy

0 2 4 6 8 10 12 14 [ 2 4 6 8 0 12 1
Epoch Epoch

Figure 4. Deep Learning DenseNet201 Optimizer Adam Model Curve

Training and Validation Accuracy Traming and Valdation Loss

— Training Loss
— \validation Logs

Accuracy

070 —— Tiaining Accuracy
—— Validation Accuracy

0 2 4 6 8 10 12 14 [ 2 4 6 8 10 12 14
Epoch Epoch

Figure 5. Deep Learning DenseNet201 Optimizer RSMProp Model Curve

Figures 4 and 5 show that DenseNet201 performs strongly and consistently with both Adam and
RMSProp optimizers. With Adam, training accuracy converges at around 91% and validation accuracy at
approximately 92%, accompanied by smoothly decreasing loss curves that indicate stable learning and good
generalization. Using RMSProp, performance improves slightly, with training accuracy reaching about 92%
and validation accuracy 93%, while closely aligned loss curves suggest better convergence. Overall, both
optimizers are effective, although RMSProp provides a marginal advantage in accuracy and training stability.
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Figure 6. Deep Learning InceptionVV3 Optimizer RSMProp Model Curve
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Figure 7. Deep Learning InceptionV3 Optimizer Adam Model Curve

Figures 6 and 7 show that InceptionV3 exhibits stable performance with both RMSProp and Adam
optimizers. Using RMSProp, training accuracy reaches approximately 87% with validation accuracy around
90%, accompanied by steadily decreasing and closely aligned loss curves, indicating good generalization.
With Adam, training accuracy slightly improves to about 88%, while validation accuracy remains around 89—
90%, with smooth loss reduction. Overall, both optimizers perform reliably, with RMSProp offering slightly
better validation stability and Adam providing marginally higher training accuracy.

Training and Validation Accuracy Training and Validation Loss
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Figure 8. Deep Learning MobileNetVV2 Optimizer RMSProp Model Curve
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Figure 9. Deep Learning MobileNetV2 Optimizer Adam Model Curve

Figures 8 and 9 indicate that MobileNetV2 performs stably with both RMSProp and Adam optimizers.
Using RMSProp, training accuracy stabilizes at around 88% with validation accuracy reaching approximately
90%, supported by closely aligned and consistently decreasing loss curves that indicate good generalization.
With Adam, training accuracy slightly improves to about 89%, but validation accuracy decreases to around
87%, accompanied by minor loss fluctuations. Overall, RMSProp provides better validation performance and
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generalization for MobileNetV2, while Adam shows slightly stronger fitting to the training data. Table 3 is

model training accuracy results.

Table 3. Model Training Accuracy Results

. _ Train Valid Testing Training Valid Testing
Arsitektur Optimizer Accuracy  Accuracy  Accuracy Loss Loss Loss
DenseNet201 Adam 92.61% 92.79% 89.42% 0.2095 0.2229 0.2985

RMSprop 92.67% 91.62% 89.88% 0.2168 0.2193 0.2857

IncentionV/3 Adam 87.80% 89.76% 85.28% 0.3327 0.3038 0.3870

P RMSprop 87.86% 88.60% 84.82% 0.3385 0.3007 0.3933

. Adam 91.19% 88.83% 90.11% 0.2651 0.3267 0.2787
MobileNetV2

RMSprop 91.65% 87.67% 8804% 0.2485 0.3659 0.3559

3.5. Evaluation

Next, evaluate the model to classify data using Confusion Matrix. The results of the confusion matrix
of the DenseNet201 architecture using the RMSProp and Adam optimizers can be seen in Figures 10, The
results of the confusion matrix of the Inception V3 architecture using the RMSProp and Adam optimizers can
be seen in Figures 11, The results of the confusion matrix of the MobileNetVV2 architecture using the

RMSProp and Adam optimizers can be seen in Figures 12.
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Figure 10. Confusion Matrix of Adam,s, and RMSProp DenzeNet201 Optimizer Architecture

Based on Figure 10, DenseNet201 shows good classification performance with both RMSProp and
Adam optimizers. Using RMSProp, the model achieves an accuracy of 84.8%, with dandelion as the best-
performing class (94.34%) and rose as the lowest (78.57%), mainly due to confusion with the tulip class.
With Adam, overall accuracy improves to 86.0%, while dandelion remains the best-performing class
(95.28%) and the lowest accuracy shifts to tulip (82.0%) due to misclassification as rose and sunflower.
Overall, most errors occur among visually similar flower classes, whereas distinctive classes are consistently

classified accurately.
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Figure 11. Confusion Matrix of Adam,s, and RMSProp Inception\VV3 Optimizer Architecture
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Based on Figure 11, InceptionV3 shows stable performance with both RMSProp and Adam
optimizers. Using RMSProp, the model achieves 84.2% accuracy, with dandelion as the best-performing
class (94.29%) and tulip as the lowest (79.0%), mainly misclassified as rose. With Adam, overall accuracy
improves to 85.6%, the best class shifts to daisy (90.67%), while tulip remains the most challenging (78.0%).
Overall, classification errors are concentrated among visually similar classes, with Adam providing a slight
accuracy improvement.

Confusion Matrix

Confusion Matrix

dandelion daisy
) .
. :
- =
- =
@ o
=3 -]
dandelion daisy

True Label
rose
=)
-
-
I
True Label
rase

5

sunflower
o
~
~
sunflower

wilip
°

wlip

2 7 1 - 2 l n 0
0 0

daisy dandelion rose sunflower wihip daisy dandelion rose sunflower wilip
Predicted Label Predicted Label

Figure 12. Confusion Matrix of Adam,s, and RMSProp MobileNet\VV2 Optimizer Architecture

Based on Figure 12, MobileNetV2 shows consistent performance with both RMSProp and Adam
optimizers. Using RMSProp, the model achieves 84.8% accuracy, with dandelion as the best-performing
class (94.29%), indicating strong feature discrimination, while daisy records the lowest accuracy (77.5%) due
to misclassification as tulip and sunflower. With Adam, overall accuracy increases to 86.6%; dandelion
remains the best-performing class (91.07%), and the lowest accuracy shifts to tulip (77.98%), often
misclassified as rose. Overall, classification errors mainly occur among visually similar flower classes, with
detailed metric results presented in Table 4.

Table 4. CNN Model Evaluation Result

Avrsitektur Optimizer Kelas Accuracy Precision Recall F1-Score Support
Daisy 0.92 0.86 0.89 77
Dandelion 0.94 0.94 0.94 106
RMSProp Rose 89% 0.85 0.84 0.84 79
Sunflower 0.90 0.95 0.92 74
Tulip 0.86 0.88 0.87 99
DenseNet201 Daisy 0.92 0.91 0.92 77
Dandelion 0.95 0.95 0.95 106
Adam Rose 90% 0.80 0.87 0.84 79
Sunflower 0.90 0.93 0.91 74
Tulip 0.91 0.83 0.87 99
Daisy 0.88 0.87 0.88 77
Dandelion 0.93 0.93 0.93 106
RMSProp Rose 85% 0.76 0.77 0.77 79
Sunflower 0.88 0.88 0.88 74
InceptionV/3 Tu_Iip 0.81 0.80 0.80 99
Daisy 0.85 0.88 0.87 77
Dandelion 0.93 0.91 0.92 106
Adam Rose 85% 0.78 0.77 0.78 79
Sunflower 0.84 0.89 0.86 74
Tulip 0.81 0.79 0.80 99
Daisy 0.97 0.81 0.88 77
Dandelion 0.91 0.93 0.92 106
RMSProp Rose 90% 0.88 0.92 0.90 79
Sunflower 0.91 0.93 0.92 74
. Tulip 0.86 0.90 0.88 99
MobileNetv2 Daisy 0.87 0.90 0.88 77
Dandelion 0.96 0.86 0.91 106
Adam Rose 88% 0.84 0.94 0.89 79
Sunflower 0.91 0.86 0.89 74
Tulip 0.83 0.86 0.84 99
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Based on the evaluation results of three CNN architectures, the InceptionV3 architecture, with both
the RMSProp and Adam optimizers, achieved 85% accuracy. However, the performance of this model tends
to be lower than DenseNet201 and MobileNetV2, especially in the Rose and Tulip classes. With RMSProp,
the highest F1-Score was recorded for the Dandelion class (0.93), followed by Daisy (0.88), Sunflower
(0.88), Tulip (0.80), and Rose (0.77). While with Adam, the highest F1-Score is still in the Dandelion class
(0.92), followed by Sunflower (0.86), Daisy (0.87), Tulip (0.80), and Rose (0.78). The MobileNetV2
architecture performed very well with 90% accuracy when using the RMSProp optimizer. In this
configuration, the highest F1-score was achieved in the Dandelion (0.92) and Sunflower (0.92) classes,
followed by Rose (0.90), Tulip (0.88), and Daisy (0.88). While with Adam's optimizer, the accuracy slightly
decreased to 88%, with the highest F1-Score in the Dandelion class (0.91), then Sunflower (0.89), Daisy
(0.88), Rose (0.89), and Tulip (0.84).

Thus, it can be concluded that the architecture that has the highest accuracy is DenseNet201 with
Adam optimizer at 90%, showing the best classification performance in general. Followed by MobileNetV2
with RMSProp, which also obtained 90% accuracy, but with a stability score slightly below DenseNet201.
The architecture with the lowest accuracy of the three was Inception V3, with both RMSProp and Adam,
which only achieved 85% accuracy.

3.6  Comparison of Evaluation Result Accuracy

Comparison of Accuracy and F1-Score by Model and Optimizer

Accuracy (%)

| | | |

DenseNet201 DenseNet201 InceptionV3 InceptionV3 MobileNetv2 MobileNetVv2
RMSProp Adam RMSProp Adam RMSProp Adam
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Figure 13. Comparison of CNN Evaluation Accuracy

Figure 13 is a visualization of the Accuracy and F1-score comparison for each combination of model
architecture and optimizer based on the CNN evaluation table. This chart helps compare the performance of
DenseNet201, InceptionV3, and MobileNetV2 models optimized using RMSProp and Adam.

3.7  Misclassification Pattern Analysis Across Flower Classes

Although the overall model performance is satisfactory, confusion matrix analysis reveals consistent
misclassification patterns among several flower classes. The dandelion and sunflower classes achieve the
highest accuracy across all models, indicating that these flower types possess more distinctive visual features
such as petal structure, shape, and color contrast. These characteristics allow CNN models to recognize them
more easily and consistently compared to other classes.

In contrast, the rose and tulip classes exhibit higher confusion rates, primarily due to similarities in
petal shape, color distribution, and overall floral appearance. A recurring misclassification occurs between
these two classes, suggesting that the models struggle to capture subtle visual differences between them.
Additionally, some confusion is observed between the daisy and sunflower classes, which share radial
symmetry and similar petal arrangements, although sunflower images generally produce more confident
predictions.

Among the evaluated architectures, DenseNet201 demonstrates superior class separation, particularly
for visually similar classes such as rose and tulip. This advantage is likely due to its dense connectivity
structure, which enables better feature reuse and deeper representation learning. MobileNetV2 also shows
competitive performance, especially considering its lightweight and efficient design, while InceptionV3
exhibits relatively lower robustness in distinguishing fine-grained visual patterns. These findings highlight
the need for enhanced feature extraction strategies, such as deeper fine-tuning, attention mechanisms, and
more diverse data augmentation, to further reduce misclassification errors and improve model generalization.

Comparative Study of CNN Architectures and Optimizers... (Yulisara et al, 2026) 135



ISSN(P): 3024-921X | ISSN(E): 3024-8043

3.8 Discussion

This study evaluates three CNN architectures, MobileNetV2, InceptionV3, and DenseNet201, using
Adam and RMSProp optimizers for flower image classification. DenseNet201 with Adam achieved the
highest accuracy (90%), followed by MobileNetV2 with RMSProp, which reached the same accuracy but
showed slightly less stable F1-scores. InceptionV3 consistently produced the lowest performance (85%) with
both optimizers.

The results indicate that optimizer effectiveness depends on architectural characteristics.
DenseNet201, with its deep and densely connected layers, benefits from Adam, which provides stable
parameter updates through adaptive learning rates. In contrast, MobileNetV2, as a lightweight architecture,
shows better generalization with RMSProp, which helps control overfitting in compact models. The similar
performance of InceptionV3 across both optimizers suggests that additional fine-tuning is needed to fully
leverage its architecture.

Compared to prior studies reporting higher accuracy using fine-tuned models such as NasNetMobile,
VGG16, and InceptionResNetV2, the lower results in this study are mainly due to the absence of extensive
fine-tuning. Nevertheless, this work contributes by systematically analyzing the interaction between CNN
architectures and optimizers. Class-level analysis further shows that dandelion and sunflower are consistently
well classified, while rose and tulip remain more challenging due to visual similarity. Overall, CNNs are
effective for flower classification, but optimal performance requires appropriate alignment between
architecture, optimizer, and training strategy.

4, CONCLUSION

This study addresses its primary objective by systematically evaluating and comparing the
performance of three CNN architectures, DenseNet201, InceptionV3, and MobileNetV2, combined with two
optimization algorithms, Adam and RMSProp, for flower image classification. The experimental results
demonstrate that DenseNet201 with the Adam optimizer achieves the best overall performance, while
MobileNetV2 with RMSProp provides competitive accuracy with improved computational efficiency. In
contrast, InceptionV3 yields lower and more consistent performance across both optimizers.

The novel contribution of this research lies in its systematic analysis of the interaction between CNN
architectures and optimizer selection within a unified experimental framework. Unlike previous studies that
focused on a single architecture or relied heavily on fine-tuning, this study highlights how optimizer choice
influences classification performance differently depending on architectural characteristics. The class-level
evaluation further reveals that visually distinctive flower classes, such as dandelion and sunflower, are
consistently classified with high accuracy, whereas rose and tulip remain challenging due to visual similarity.

The strengths of this study include a clear comparative evaluation of multiple CNN architectures, the
use of multiple performance metrics, and an analysis of class-wise misclassification patterns. However, this
research also has several limitations. The experiments are conducted using a single dataset, without
validation on more diverse or imbalanced datasets. Additionally, advanced training strategies such as
extensive fine-tuning, learning rate scheduling, and systematic hyperparameter optimization are not applied,
and the training process is limited to a fixed number of epochs.

Future research should explore deeper and more complex architectures, such as NasNetMobile and
InceptionResNetV2, combined with comprehensive fine-tuning, adaptive learning rate strategies, and
advanced data augmentation. Evaluating the models on multiple datasets and using cross-validation is also
recommended to improve robustness and generalization. These directions are expected to further enhance the
performance and practical applicability of CNN-based flower classification systems.
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