Information Gain Feature Selection for Temporal Sentiment Analysis of Pedulilindungi Application Review using Naïve Bayes Classifier Algorithm

Information Gain Feature Selection for Temporal Sentiment Analysis of Pedulilindungi Application Review using Naïve Bayes Classifier Algorithm

Authors

  • Siti Syahidatul Helma Politeknik Caltex Riau
  • Dini Hidayatul Qudsi Politeknik Caltex Riau
  • Ivan Chatisa Politeknik Caltex Riau

DOI:

https://doi.org/10.57152/ijirse.v5i2.2217

Keywords:

Information Gain, naive bayes classifier, Pedulilindungi, selection feature, text mining

Abstract

Through the Instruction of the Minister of Home Affairs of the Republic of Indonesia Number 38 of 2021 concerning the Implementation of Restrictions on Community Activities (PPKM), all communities are required to use the Pedulilindungi application from August 31, 2021, to September 6, 2021, and updated regularly. Users can download and access the Pedulilindungi application through the Google Play Store application market. There, users can directly assess an application by providing reviews that can describe user responses and satisfaction with the application. The Naïve Bayes Classifier (NBC) algorithm is applied to perform modeling in classifying temporal sentiment analysis data. Prior to classification, a feature selection process with information gain is performed. Based on the experimental results, the best evaluation was produced on temporal data dated September 03, 2021, with an accuracy of 91.9% and precision and recall values of 99.9% and 91.9%, respectively.

References

World Health Organization WHO, “WHO Coronavirus (COVID-19) Dashboard,” WHO (World Health Organization). [Online]. Available: https://covid19.who.int/region/searo/country/id

F. N. Afiana, I. R. Yunita, L. D. Oktaviana, and U. Hasanah, “Pelatihan Teknis Penggunaan Aplikasi PeduliLindungi Guna Melacak Penyebaran COVID-19,” JPMM (Jurnal Pengabdi. Mitra Masyarakat), vol. 2, no. 2, pp. 98–106, 2020.

KOMINFO, “Keputusan Menteri Komunikasi dan Informatika Nomor 171 Tahun 2020 tentang Penetapan Aplikasi Pedulilindungi Dalam Rangka Pelaksanaan Surveilans Kesehatan Penanganan Corona Virus Disease 2019 (Covid-19),” 2020. [Online]. Available: https://jdih.kominfo.go.id/produk_hukum/view/id/735/t/keputusan+menteri+komunikasi+dan+informatika+nomor+171+tahun+2020

Menteri Dalam Negeri Republlik Indonesia, “Instruksi Menteri Dalam Negeri Republik Indonesia Nomor 38 Tahun 2021 Tentang Pemberlakukan Pembatasan Kegiatan Masyarakat (PPKM) Level 4, Level 3, dan Level 2 Corona Virus Disease 2019 di Wilayah Jawa dan Bali,” Jakarta, 2021.

N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, and S. Samudi, “Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, p. 293, 2020, doi: 10.24114/cess.v5i2.18186.

Suwanda Aditya Saputra, D. Rosiyadi, W. Gata, and S. M. Husain, “Analisis Sentimen E-Wallet Pada Google Play Menggunakan Algoritma Naive Bayes Berbasis Particle Swarm Optimization Suwanda,” Resti, vol. 3, no. 3, pp. 377–382, 2019.

G. A. Buntoro, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter,” Integer J., vol. 2, no. 1, pp. 32–41, 2017, [Online]. Available: https://t.co/jrvaMsgBdH

M. Allahyari et al., “A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques,” 2017, [Online]. Available: http://arxiv.org/abs/1707.02919

S. Fransiska, R. Rianto, and A. I. Gufroni, “Sentiment Analysis Provider By.U on Google Play Store Reviews with TF-IDF and Support Vector Machine (SVM) Method,” Sci. J. Informatics, vol. 7, no. 2, pp. 203–212, 2020, [Online]. Available: https://journal.unnes.ac.id/nju/sji/article/view/25596

S. Wahyu Handani, D. Intan Surya Saputra, Hasirun, R. Mega Arino, and G. Fiza Asyrofi Ramadhan, “Sentiment analysis for go-jek on google play store,” J. Phys. Conf. Ser., vol. 1196, no. 1, 2019, doi: 10.1088/1742-6596/1196/1/012032.

R. Wahyudi and G. Kusumawardana, “Analisis Sentimen pada Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine,” J. Inform., vol. 8, no. 2, pp. 200–207, 2021, doi: 10.31294/ji.v8i2.9681.

A. Hendra and F. Fitriyani, “Analisis Sentimen Review Halodoc Menggunakan Nai ?ve Bayes Classifier,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 6, no. 2, pp. 78–89, 2021, doi: 10.14421/jiska.2021.6.2.78-89.

Mustakim et al., “Data Sharing Technique Modeling for Naive Bayes Classifier for Eligibility Classification of Recipient Students in the Smart Indonesia Program,” J. Phys. Conf. Ser., vol. 1424, no. 1, 2019, doi: 10.1088/1742-6596/1424/1/012009.

S. G. Setyorini and Mustakim, “Application of the nearest neighbor algorithm for classification of online taxibike sentiments in indonesia in the google playstore application,” J. Phys. Conf. Ser., vol. 2049, no. 1, 2021, doi: 10.1088/1742-6596/2049/1/012026.

S. Hassan, M. Rafi, and M. S. Shaikh, “Comparing SVM and Naïve Bayes classifiers for text categorization with Wikitology as knowledge enrichment,” Proc. 14th IEEE Int. Multitopic Conf. 2011, INMIC 2011, pp. 31–34, 2011, doi: 10.1109/INMIC.2011.6151495.

L. Dey, S. Chakraborty, A. Biswas, B. Bose, and S. Tiwari, “Sentiment Analysis of Review Datasets Using Naïve Bayes‘ and K-NN Classifier,” Int. J. Inf. Eng. Electron. Bus., vol. 8, no. 4, pp. 54–62, 2016, doi: 10.5815/ijieeb.2016.04.07.

Dinda Ayu Muthia, “ANALISIS SENTIMEN PADA REVIEW BUKU MENGGUNAKAN ALGORITMA NAÏVE BAYES,” J. Paradig., vol. XVI, no. 1, p. 12, 2014.

I. Maulida, A. Suyatno, and H. R. Hatta, “Seleksi Fitur Pada Dokumen Abstrak Teks Bahasa Indonesia Menggunakan Metode Information Gain,” J. SIFO Mikroskil, vol. 17, no. 2, pp. 249–258, 2016, doi: 10.55601/jsm.v17i2.379.

Ivan, Y. A. Sari, and P. P. Adikara, “Klasifikasi Hate Speech Berbahasa Indonesia di Twitter Menggunakan Naive Bayes dan Seleksi Fitur Information Gain dengan Normalisasi Kata,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 5, pp. 4914–4922, 2019, [Online]. Available: http://j-ptiik.ub.ac.id

C. E. Putri and R. E. Hamzah, “Aplikasi Pedulilindungi Mitigasi Bencana Covid-19 Di Indonesia,” J. Pustaka Komun., vol. 4, no. 1, pp. 66–78, 2021, doi: 10.32509/pustakom.v4i1.1321.

J. Ma, W. Xu, Y. Sun, E. Turban, S. Wang, and O. Liu, “An ontology-based text-mining method to cluster proposals for research project selection,” IEEE Trans. Syst. man, Cybern. a Syst. humans, vol. 42, no. 3, pp. 784–790, 2012.

R. Feldman and J. Sanger, The text mining handbook: advanced approaches in analyzing unstructured data. Cambridge university press, 2007.

M. W. Berry and J. Kogan, Text mining: applications and theory. John Wiley & Sons, 2010.

N. M. S. Hadna, I. S. Paulus, and W. Winarno, “Studi Literatur Tentang Perbandingan Metode Untuk Proses Analisis Sentimen Di Twitter,” Semin. Nas. Teknol. Inf. dan Komun., vol. 2016, no. March, pp. 1–8, 2016.

W. Gata, “Akurasi Text Mining Menggunakan Algoritma K-Nearest Neighbour pada Data Content Berita SMS,” vol. 6, pp. 1–13, 2017.

C. D. M. P. Raghavan and H. Schütze, “An Introduction to Information Retrieval,” Cambridge Univ. Press, pp. 1–519, 2009, doi: 10.1210/endo-38-3-156.

F. Tala, “A study of stemming effects on information retrieval in Bahasa Indonesia,” 2003.

S. Andini, “Klasifikasi Dokument Teks Menggunakan Algoritma Naive Bayes dengan Bahasa Pemograman Java,” J. Teknol. Inf. & Pendidik., vol. 6, no. 2, pp. 140–147, 2013.

Firdaus Mahmudy and Wahyu Widodo, “Klasifikasi Artikel Berita Secara Otomatis Menggunakan,” Tekno.

F. Ariani, Amir, N. Alam, and K. Rizal, “Klasifikasi Penetapan Status Karyawan Dengan MenggunakanMetode Naïve Bayes,” Paradigma, vol. XX, no. 2, pp. 33–38, 2018, doi: 10.31294/p.v.

M. A. Thanoon, M. J. M. Zedan, and A. N. Hameed, “Feature selection based on wrapper and information gain,” in 2019 1st AL-Noor International Conference for Science and Technology (NICST), 2019, pp. 32–37.

N. A. Shaltout, M. El-Hefnawi, A. Rafea, and A. Moustafa, “Information gain as a feature selection method for the efficient classification of influenza based on viral hosts,” Lect. Notes Eng. Comput. Sci., vol. 1, pp. 625–631, 2014.

X. Wang, M. Zuo, and L. Song, “A feature selection method based on information gain and BP neural network,” in Chinese Intelligent Systems Conference, 2017, pp. 23–30.

Downloads

Published

2025-08-05