Analisa Algoritma Naïve Bayes Classifier (NBC) Untuk Prediksi Penjualan Alat Kesehatan

Naïve Bayes Classifier (NBC) Algorithm Analysis for Prediction Medical Device Sales

Authors

  • Dian Ramadhani Universitas Riau
  • Qurotul A’yuniyah Universitas Islam Negeri Sultan Syarif kasim Riau
  • Winda Elvira Universitas Islam Negeri Sultan Syarif kasim Riau
  • Nanda Nazira Universitas Islam Negeri Sultan Syarif kasim Riau
  • Isnani Ambarani Universitas Islam Negeri Sultan Syarif kasim Riau
  • Sofia Fulvi Intan Universitas Islam Negeri Sultan Syarif kasim Riau

DOI:

https://doi.org/10.57152/ijirse.v3i2.941

Abstract

The application of Data Mining in the business scope can be found in the use of Customer Relationship Management (CRM). CRM is a company's effort to manage its sales and customers more optimally. Company Sales Data can be processed into knowledge that can be used to optimize marketing strategies. Purna Karya Scientific is a company engaged in the field of medical/medical devices, laboratory equipment, chemical and dental materials as well as educational aids. In this study has used sales data at PT. After Scientific Work with attributes item code, relation, number of items, and label as class. Then classify medical device sales data by implementing the Naïve Bayes Classifier (NBC) algorithm which can predict sales results by displaying an accuracy value. Implementation was carried out using Google Colab to obtain an accuracy value of 95%, a recall value of 95%, and a precision value of 81%. The results of data on sales of medical devices with 2 classes namely "Selling" and "Not Selling". The resulting value is very good and can be used as a basis for classifying sales of medical devices by analyzing the stock of goods at PT. Full Scientific Work.

References

E. Riana, M. Eka Sri Sulistyawati, and O. Pratama Putra, “Penerapan Perancangan Arsitektur Enterprise Pada Pelayanan Di RSU Jakarta Menggunakan TOGAF ADM,” J. ICT Inf. Commun. Technol., vol. 21, no. 2, pp. 68–75, 2022.

U. Ramadhani and S. A. Putri, “Pemodelan Modified K-Nearest Neighbor Dalam Klasifikasi Jurusan Siswa Di SMAN 6 Pekanbaru,” no. November, pp. 87–93, 2021.

Mustakim and G. Oktaviani F, “Algoritma K-Nearest Neighbor Classification Sebagai Sistem Prediksi Predikat Prestasi Mahasiswa,” vol. 13, no. 2, pp. 195–202, 2016.

F. C. Pratama, P. S. Kewirausahaan, I. Teknologi, and K. Bina, “CUSTOMER RELATIONSHIP MANAGEMENT SEBAGAI STRATEGI MENCAPAI KEUNGGULAN BERSAING BERKELANJUTAN PENGGILINGAN PADI,” 2017.

N. Nuraeni, “Klasifikasi Data Mining untuk Prediksi Potensi Nasabah dalam Membuat Deposito Berjangka,” J. Ilm. Intech Inf. Technol. J. …, vol. 3, no. 01, pp. 65–74, 2021.

P. Rahayu, L. Sugi, and R. Ningsih, “Pengaruh Customer Relationship Management Dan Brand Image Terhadap Patient Satisfaction Di Klinik Pratama Aulia,” vol. 1, no. 4, pp. 68–79, 2023.

D. Pupuk, D. Ud, M. Tani, and K. Simpang, “Implementasi E-CRM Untuk Meningkat Penjualan Obat-Obatan,” vol. 10, no. 1, pp. 241–251, 2023.

D. Rezekika, “Penerapan Algoritma Naïve Bayes Untuk Memprediksi Penjualan Spare Part Sepeda Motor,” vol. 8, pp. 326–329, 2020.

N. Pransiska and A. H. Mirza, “Bina Darma Conference on Computer Science PENERAPAN DATA MINING PREDIKSI PENJUALAN BARANG ELEKTRONIK TERLARIS MENGGUNAKAN ALGORITMA NAÏVE BAYES ( Study Kasus?: Planet Cash And Credit Cabang Muara Enim ) Bina Darma Conference on Computer Science,” pp. 2157–2169, 2016.

H. D. Wijaya and S. Dwiasnati, “Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat,” vol. 7, no. 1, pp. 1–7, 2020.

A. B. Habsy, N. Mufidha, C. Shelomita, I. Rahayu, and M. Ilham Muckorobin, “Filsafat Dasar dalam Konseling Psikoanalisis?: Studi Literatur,” Indones. J. Educ. Couns., vol. 7, no. 2, pp. 189–199, 2023, doi: 10.30653/001.202372.266.

Ardiansyah, Risnita, and M. S. Jailani, “Teknik Pengumpulan Data Dan Instrumen Penelitian Ilmiah Pendidikan Pada Pendekatan Kualitatif dan Kuantitatif,” J. IHSAN J. Pendidik. Islam, vol. 1, no. 2, pp. 1–9, 2023, doi: 10.61104/ihsan.v1i2.57.

S. Saifullah, M. Zarlis, Z. Zakaria, and R. W. Sembiring, “Analisa Terhadap Perbandingan Algoritma Decision Tree Dengan Algoritma Random Tree Untuk Pre-Processing Data,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 1, no. 2, p. 180, 2017, doi: 10.30645/j-sakti.v1i2.41.

J. Homepage, R. Septianarta Putra, and I. D. Ratih, “MALCOM: Indonesian Journal of Machine Learning and Computer Science Classification of Responses to The Implementation of The Internship Program Using Naive Bayes Classifier Method Klasifikasi Tanggapan Pelaksanaan Program Magang dengan Menggunakan Metode ,” vol. 1, no. October, pp. 129–137, 2021.

H. Hozairi, A. Anwari, and S. Alim, “Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes,” Netw. Eng. Res. Oper., vol. 6, no. 2, p. 133, 2021, doi: 10.21107/nero.v6i2.237.

B. A. Candra Permana and I. K. Dewi Patwari, “Komparasi Metode Klasifikasi Data Mining Decision Tree dan Naïve Bayes Untuk Prediksi Penyakit Diabetes,” Infotek J. Inform. dan Teknol., vol. 4, no. 1, pp. 63–69, 2021, doi: 10.29408/jit.v4i1.2994.

A. Qurotul, E. Tasia, N. Nazira, P. F. Pratama, M. R. Anugrah, and J. Adhiva, “Implementasi Algoritma Naïve Bayes Classifier ( NBC ) untuk Klasifikasi Penyakit Ginjal Kronik,” vol. 4, no. September, pp. 72–76, 2022, doi: 10.30865/json.v4i1.4781.

C. Zai, “Implementasu Data Mining Sebagai Pengolahan Data,” Portal Data, vol. 2, no. 3, pp. 1–12, 2022.

M. Fitriani, G. F. Nama, and M. Mardiana, “Implementasi Association Rule Dengan Algoritma Apriori Pada Data Peminjaman Buku UPT Perpustakaan Universitas Lampung Menggunakan Metodologi CRISP-DM,” J. Inform. dan Tek. Elektro Terap., vol. 10, no. 1, Jan. 2022, doi: 10.23960/jitet.v10i1.2263.

T. A. Putra and P. A. . Purnama, “Perancangan Sistem Pakar untuk Mendiagnosa Penyakit Toksoplasma pada Wanita Menggunakan Metode Bayes dengan Bahasa Pemrograman PHP dan Database MySQL,” Sink. J. dan Penelit. Tek. Inform., vol. 3, no. 1, pp. 120–129, 2018.

A. Ali, A. Khairan, F. Tempola, and A. Fuad, “Application Of Naïve Bayes to Predict the Potential of Rain in Ternate City,” E3S Web Conf., vol. 328, p. 04011, 2021, doi: 10.1051/e3sconf/202132804011.

A. Harun and D. P. Ananda, “Analisa Sentimen Opini Publik Tentang Vaksinasi Covid-19 di Indonesia Menggunakan Naïve Bayes dan Decission Tree,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 58–63, 2021.

E. P. K. Orpa, E. F. Ripanti, and Tursina, “Model Prediksi Awal Masa Studi Mahasiswa,” J. Sist. dan Teknol. Inf., vol. 7, no. 4, pp. 272–278, 2019.

B. Amanda Putra and S. Toto Raharjo, “VARIABEL INTERVENING (Studi Kasus Pada Bengkel Alex Ac Mobil Semarang),” Diponegoro J. Manag., vol. 11, no. 1, pp. 1–11, 2022, [Online]. Available: http://ejournal-s1.undip.ac.id/index.php/dbr

Downloads

Published

2023-09-28