Evaluation of the Effectiveness of Neural Network Models for Analyzing Customer Review Sentiments on Marketplace

Authors

  • Kana Karunia Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Aprilya Eka Putri Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • May Dila Fachriani Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Muhammad Hilman Rois Al-Qasimia University, United Arab Emirates

DOI:

https://doi.org/10.57152/predatecs.v2i1.1100

Keywords:

Bidirectional Gated Recurrent Unit, Customer Reviews, Gated Recurrent Unit, Long-ShortTerm Memory

Abstract

According to the 2019 report, Tokopedia is the most visited marketplace with 140,000,000 visitors per month, making it one of the most popular marketplaces in Indonesia. Customers have the opportunity to write reviews about the products they purchase at the end of the transaction process on Tokopedia. The aim of this research is to conduct sentiment analysis on product reviews on Tokopedia. Three neural networks that will be used for text classification are Bi-GRU, GRU, and LSTM. The data processing technique is divided into training and testing samples, split into 80%:20% using the holdout technique. The BI-GRU algorithm has an accuracy of 0.93% and precision of 0.96, better than the other two methods LSTM and GRU, which each have an accuracy of 0.92 and recall of 0.91.

References

Luh Kadek Budi Martini, Ejasa Sembiring, and Frandy Paulus, “Customer Online Customer Rating Dan Online Customer Review Terhadap Keputusan Pembelian Di Toko Modeliafashion Pada Marketplace Tokopedia Jakarta,” J. Appl. Manag. Account. Sci., vol. 4, no. 1, pp. 15–24, 2022, doi: 10.51713/jamas.v4i1.67.

R. Sutoyo, S. Achmad, A. Chowanda, E. W. Andangsari, and S. M. Isa, “PRDECT-ID: Indonesian product reviews dataset for emotions classification tasks,” Data Br., vol. 44, p. 108554, 2022, doi: 10.1016/j.dib.2022.108554.

H. Wan, M. Q. Mei, J. Yan, J. Xiong, and L. Wang, “How does apology matter? Responding to negative customer reviews on online-to-offline platforms,” Electron. Commer. Res. Appl., vol. 61, no. July, p. 101291, 2023, doi: 10.1016/j.elerap.2023.101291.

R. D. Irawan and R. . Nurlinda, “Pengaruh E-Service Quality, Online Customer Review dan Sales Promotion Terhadap Minat Beli Ulang,” J. Manaj. dan Bisnis Ekon., vol. 1, no. 4, pp. 1–25, 2023, doi: 10.54066/jmbe-itb.v1i4.660.

O. Manullang, C. Prianto, and N. H. Harani, “Analisis Sentimen Untuk Memprediksi Hasil Calon Pemilu Presiden Menggunakan Lexicon Based Dan Random Forest,” J. Ilm. Inform., vol. 11, no. 02, pp. 159–169, 2023, doi: 10.33884/jif.v11i02.7987.

L. Zhu, M. Xu, Y. Bao, Y. Xu, and X. Kong, “Deep learning for aspect-based sentiment analysis: a review,” PeerJ Comput. Sci., vol. 8, 2022, doi: 10.7717/PEERJ-CS.1044.

A. Adak, B. Pradhan, and N. Shukla, “Sentiment Analysis of Customer Reviews of Food Delivery Services Using Deep Learning and Explainable Artificial Intelligence: Systematic Review,” Foods, vol. 11, no. 10, 2022, doi: 10.3390/foods11101500.

C. Intelligence and Neuroscience, “Retracted: Real-Time Twitter Spam Detection and Sentiment Analysis using Machine Learning and Deep Learning Techniques,” Comput. Intell. Neurosci., vol. 2023, pp. 1–1, 2023, doi: 10.1155/2023/9810910.

F. Fitroh and F. Hudaya, “Systematic Literature Review: Analisis Sentimen Berbasis Deep Learning,” J. Nas. Teknol. dan Sist. Inf., vol. 9, no. 2, pp. 132–140, 2023, doi: 10.25077/teknosi.v9i2.2023.132-140.

R. Naquitasia, D. H. Fudholi, and L. Iswari, “Analisis Sentimen Berbasis Aspek pada Wisata Halal dengan Metode Deep Learning,” J. Teknoinfo, vol. 16, no. 2, p. 156, 2022, doi: 10.33365/jti.v16i2.1516.

W. Widayat, “Analisis Sentimen Movie Review menggunakan Word2Vec dan metode LSTM Deep Learning,” J. Media Inform. Budidarma, vol. 5, no. 3, p. 1018, 2021, doi: 10.30865/mib.v5i3.3111.

M. A. H. Wadud, M. M. Kabir, M. F. Mridha, M. A. Ali, M. A. Hamid, and M. M. Monowar, “How can we manage Offensive Text in Social Media - A Text Classification Approach using LSTM-BOOST,” Int. J. Inf. Manag. Data Insights, vol. 2, no. 2, p. 100095, 2022, doi: 10.1016/j.jjimei.2022.100095.

B. Subramanian, B. Olimov, S. M. Naik, S. Kim, K. H. Park, and J. Kim, “An integrated mediapipe-optimized GRU model for Indian sign language recognition,” Sci. Rep., vol. 12, no. 1, pp. 1–16, 2022, doi: 10.1038/s41598-022-15998-7.

R. Sowmiya, G. Sivakamasundari, and V. Archana, “Facial Emotion Recognition using Deep Learning Approach,” Int. Conf. Autom. Comput. Renew. Syst. ICACRS 2022 - Proc., vol. 2022, pp. 1064–1069, 2022, doi: 10.1109/ICACRS55517.2022.10029092.

R. K. Hario Laskito Ardi,Eko Sediyono, “Support Vector Machine Classifier for Sentiment Analysis of Feedback Marketplace with a Comparison Features at Aspect Level,” Int. J. Innov. Res. Adv. Eng., vol. 4, no. 11, 2017, doi: 10.26562/IJIRAE.2017.NVAE10080.

A. N. Rohman, R. Luviana Musyarofah, E. Utami, and S. Raharjo, “Natural Language Processing on Marketplace Product Review Sentiment Analysis,” 2020 2nd Int. Conf. Cybern. Intell. Syst. ICORIS 2020, 2020, doi: 10.1109/ICORIS50180.2020.9320827.

N. R. Bhowmik, M. Arifuzzaman, and M. R. H. Mondal, “Sentiment analysis on Bangla text using extended lexicon dictionary and deep learning algorithms,” Array, vol. 13, p. 100123, 2022, doi: 10.1016/j.array.2021.100123.

M. M.Abdelgwad, T. H. A Soliman, A. I.Taloba, and M. F. Farghaly, “Arabic aspect based sentiment analysis using bidirectional GRU based models,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 9, pp. 6652–6662, 2022, doi: 10.1016/j.jksuci.2021.08.030.

B. Liu, “Sentiment Analysis Essentials,” Cambridge Univ. Press, 2015.

B. Liu, M. Hu, and J. Cheng, “Opinion observer,” p. 342, 2005, doi: 10.1145/1060745.1060797.

D. H. Wahid and A. SN, “Peringkasan Sentimen Esktraktif di Twitter Menggunakan Hybrid TF-IDF dan Cosine Similarity,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 10, no. 2, p. 207, 2016, doi: 10.22146/ijccs.16625.

G. Chellasamy, S. K. Arumugasamy, and S. Govindaraju, “Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information ,” Diabetes Metab Syndr., vol. 14(4), no. January, pp. 337–339, 2020.

P. Sugiartawan, A. A. Jiwa Permana, and P. I. Prakoso, “Forecasting Kunjungan Wisatawan Dengan Long Short Term Memory (LSTM),” J. Sist. Inf. dan Komput. Terap. Indones., vol. 1, no. 1, pp. 43–52, 2018, doi: 10.33173/jsikti.5.

A. K. Gangwar and V. Ravi, “A Novel BGCapsule Network for Text Classification,” SN Comput. Sci., vol. 3, no. 1, pp. 1–14, 2022, doi: 10.1007/s42979-021-00963-4.

F. M. Shiri, T. Perumal, N. Mustapha, and R. Mohamed, “A Comprehensive Overview and Comparative Analysis on Deep Learning Models: CNN, RNN, LSTM, GRU,” 2023, doi: 10.48550/arXiv.2305.17473.

Downloads

Published

2024-04-21