Comparison of K-Means, BIRCH and Hierarchical Clustering Algorithms in Clustering OCD Symptom Data
DOI:
https://doi.org/10.57152/predatecs.v1i2.1106Keywords:
BIRCH, Clustering, Hierarchical Algorithm, K-Means, OCDAbstract
The hallmarks of Obsessive-Compulsive Disorder (OCD) are intrusive, anxiety-inducing thoughts (called obsessions) and associated repeated activities (called compulsions). To understand the patterns and relationships between OCD data that have been obtained, data will be grouped (clustering). In clustering using several clustering algorithms, namely K-Means, BIRCH, In this work, hierarchical clustering was used to identify the optimal cluster value comparison, and the Davies Bouldin Index (DBI) was used to confirm the results. Then the results of the best cluster value in processing OCD data are using the BIRCH algorithm in the K10 experiment which gets a value of 1.3. While the K-Means algorithm obtained the best cluster at K10 with a value obtained of 1.36 and the Hierarchical clustering algorithm also at the K10 value of 2.03. Thus in this study, the comparison results of the application of 3 clustering algorithms obtained results, namely the BIRCH algorithm shows the value of the resulting cluster is the best in clustering OCD data. This means that the BIRCH algorithm can be used to cluster OCD data more accurately and efficiently.
References
J. Bruder et al., “MusicCohort: Pilot feasibility of a protocol to assess students’ physical and mental health in a Canadian post-secondary school of music,” BMC Res. Notes, vol. 14, no. 1, pp. 1–7, 2021, doi: 10.1186/s13104-021-05829-9.
W. Novia Annisa et al., “Suicidal Risk in People with Obsessive Compulsive Disorder,” 2023, [Online]. Available: http://dx.doi.org/10.29303/jbt.v23i4.5602.
P. Morgado, “What Is Obsessive Compulsive Disorder?,” Front. Young Minds, vol. 7, 2019, doi: 10.3389/frym.2019.00138.
X. Yang et al., “Multivariate classification of drug-naive obsessive-compulsive disorder patients and healthy controls by applying an SVM to resting-state functional MRI data,” BMC Psychiatry, vol. 19, no. 1, pp. 1–8, 2019, doi: 10.1186/s12888-019-2184-6.
H. Lamothe, J.-M. Baleyte, P. Smith, A. Pelissolo, and L. Mallet, “Individualized Immunological Data for Precise Classification of OCD Patients,” Brain Sci., vol. 8, no. 8, p. 149, 2018, doi: 10.3390/brainsci8080149.
A. Ali et al., “Systematic Review: A State of Art ML Based Clustering Algorithms for Data Mining,” Proc. - 2020 23rd IEEE Int. Multi-Topic Conf. INMIC 2020, 2020, doi: 10.1109/INMIC50486.2020.9318060.
M. A. Ahmed, H. Baharin, and P. N. E. Nohuddin, “Analysis of K-means, DBSCAN and OPTICS Cluster algorithms on Al-Quran verses,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 8, pp. 248–254, 2020, doi: 10.14569/IJACSA.2020.0110832.
K. P. Sinaga and M. S. Yang, “Unsupervised K-means clustering algorithm,” IEEE Access, vol. 8, pp. 80716–80727, 2020, doi: 10.1109/ACCESS.2020.2988796.
Z. Lv, T. Liu, C. Shi, J. A. Benediktsson, and H. Du, “Novel Land Cover Change Detection Method Based on k-Means Clustering and Adaptive Majority Voting Using Bitemporal Remote Sensing Images,” IEEE Access, vol. 7, pp. 34425–34437, 2019, doi: 10.1109/ACCESS.2019.2892648.
F. Ramadhani, M. Zarlis, and S. Suwilo, “Improve BIRCH algorithm for big data clustering,” IOP Conf. Ser. Mater. Sci. Eng., vol. 725, no. 1, 2020, doi: 10.1088/1757-899X/725/1/012090.
“Evaluation of BIRCH Clustering Algorithm for Big Data,” vol. 4, no. 4, 2019.
A. Guazzini, M. C. Gursesli, E. Serritella, M. Tani, and M. Duradoni, “Obsessive-Compulsive Disorder (OCD) Types and Social Media: Are Social Media Important and Impactful for OCD People?,” Eur. J. Investig. Heal. Psychol. Educ., vol. 12, no. 8, pp. 1108–1120, 2022, doi: 10.3390/ejihpe12080078.
E. Fontes-Perryman and R. Spina, “Fear of missing out and compulsive social media use as mediators between OCD symptoms and social media fatigue.,” Psychol. Pop. Media, vol. 11, no. 2, pp. 173–182, 2022, doi: 10.1037/ppm0000356.
G. Martinotti et al., “Therapeutic potentials of ketamine and esketamine in obsessive–compulsive disorder (Ocd), substance use disorders (sud) and eating disorders (ed): A review of the current literature,” Brain Sci., vol. 11, no. 7, 2021, doi: 10.3390/brainsci11070856.
R. Rostami et al., “Efficacy and clinical predictors of response to rTMS treatment in pharmacoresistant obsessive-compulsive disorder (OCD): A retrospective study,” BMC Psychiatry, vol. 20, no. 1, pp. 1–13, 2020, doi: 10.1186/s12888-020-02769-9.
M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algorithm: A comprehensive survey and performance evaluation,” Electron., vol. 9, no. 8, pp. 1–12, 2020, doi: 10.3390/electronics9081295.
H. S. Kim, S. K. Kim, and L. S. Kang, “BIM performance assessment system using a K-means clustering algorithm,” J. Asian Archit. Build. Eng., vol. 20, no. 1, pp. 78–87, 2021, doi: 10.1080/13467581.2020.1800471.
I. Kamila, U. Khairunnisa, and M. Mustakim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 5, p. 119, Feb. 2019, doi: 10.24014/rmsi.v5i1.7381.
M. C. Nwadiugwu, “Gene-Based Clustering Algorithms: Comparison Between Denclue, Fuzzy-C, and BIRCH,” Bioinform. Biol. Insights, vol. 14, pp. 1–6, 2020, doi: 10.1177/1177932220909851.
M. Arora, S. Agrawal, and R. Patel, “User Location prediction using Hybrid BIRCH clustering and Machine Learning approach,” J. Integr. Sci. Technol., vol. 12, no. 1, pp. 1–7, 2023.
Q. Qi and Y. Wang, “Motor Group Aggregation of Refinery and Chemical Enterprises Based on Hierarchical Clustering Algorithm,” vol. 4, pp. 13–22, 2021, doi: 10.23977/jaip.2020.040102.
R. Petegrosso, Z. Li, and R. Kuang, “Machine learning and statistical methods for clustering single-cell RNA-sequencing data,” Brief. Bioinform., vol. 21, no. 4, pp. 1209–1223, 2019, doi: 10.1093/bib/bbz063.
H. Teichgraeber and A. Brandt, “Clustering methods to find representative periods for the optimization of energy systems: An initial framework and comparison,” Appl. Energy, vol. 239, pp. 1283–1293, Apr. 2019, doi: 10.1016/j.apenergy.2019.02.012.
M. Mughnyanti, S. Efendi, and M. Zarlis, “Analysis of determining centroid clustering x-means algorithm with davies-bouldin index evaluation,” IOP Conf. Ser. Mater. Sci. Eng., vol. 725, no. 1, 2020, doi: 10.1088/1757-899X/725/1/012128.
Y. A. Wijaya, D. A. Kurniady, E. Setyanto, W. S. Tarihoran, D. Rusmana, and R. Rahim, “Davies Bouldin Index Algorithm for Optimizing Clustering Case Studies Mapping School Facilities,” TEM J., vol. 10, no. 3, pp. 1099–1103, 2021, doi: 10.18421/TEM103-13.
H. Barros et al., “Nutritional Clustering of Cookies Developed with Cocoa Shell, Soy, and Green Banana Flours Using Exploratory Methods,” Food Bioprocess Technol., vol. 13, Sep. 2020, doi: 10.1007/s11947-020-02495-w.
I. F. Ashari, R. Banjarnahor, D. R. Farida, S. P. Aisyah, A. P. Dewi, and N. Humaya, “Application of Data Mining with the K-Means Clustering Method and Davies Bouldin Index for Grouping IMDB Movies,” J. Appl. Informatics Comput., vol. 6, no. 1, pp. 07–15, 2022, doi: 10.30871/jaic.v6i1.3485.