Convolutional Neural Networks Using EfficientNetB0 Architecture and Hyperparameters on Skin Disease Classification

Authors

  • Putri Khairunnisa Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Wahyu Eka Putra Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Wu Yitong Shantou University, China
  • Abni Jufrizal Süleyman Demirel University, Turkey
  • Muhammad Nur Aflah Makmum Süleyman Demirel University, Turkey

DOI:

https://doi.org/10.57152/predatecs.v2i2.1569

Keywords:

EfficientNetB0, Hyperparameter, Optimization, Skin Disease

Abstract

Skin diseases are often caused by air temperature, environmental hygiene and personal hygiene, with symptoms such as itching, pain and redness. Contributing factors include exposure to chemicals, sunlight, infections, a weak immune system, microorganisms, and poor personal hygiene. This study uses Convolutional Neural Networks (CNN) with EfficientNetB0 model and hyperparameter optimization for skin disease classification. The dataset consists of 1158 images that have been divided into eight categories, with 80% for training data and 20% for test data. Data augmentation is applied to increase the variety of training data. Various combinations of hyperparameters such as learning rate, optimizer (Adamax and AdamW), and activation function (ReLU and LeakyReLU) were tested in 16 training scenarios. The best results was obtained from the third scenario with the original dataset, Adamax optimizer, ReLU activation function, and 0.01 learning rate, which gave a testing accuracy of 95.70%. The model also showed good generalization and low loss values. Confusion matrix analysis and classification report showed high accuracy in skin disease classification. This study concludes that EfficientNetB0 with proper hyperparameter optimization can improve the accuracy and effectiveness of skin disease diagnosis.

References

M. A. M. Almeida and I. A. X. Santos, “Classification models for skin tumor detection using texture analysis in medical images,” J. Imaging, vol. 6, no. 6, pp. 1–15, 2020, doi: 10.3390/JIMAGING6060051.

P. S. Mustafa, “Implikasi Pola Kerja Telensefalon dan Korteks Cerebral dalam Pendidikan Jasmani,” Media Ilmu Keolahragaan Indones., vol. 10, no. 2, pp. 53–62, 2020, doi: 10.15294/miki.v10i2.24901.

N. Andrini, “Karakteristik Dan Perawatan Kulit Untuk Orang Asia,” J. Pandu Husada, vol. 4, no. 3, pp. 14–23, 2023, doi: https://doi.org/10.30596/jph.v4i3.16621.g10091.

T. Srisantyorini and N. F. Cahyaningsih, “Analisis Kejadian Penyakit Kulit pada Pemulung di Tempat Pengolahan Sampah Terpadu (TPST) Kelurahan Sumur Batu Kecamatan Bantar Gebang Kota Bekasi,” J. Kedokt. dan Kesehat., vol. 15, no. 2, p. 135, 2019, doi: 10.24853/jkk.15.2.135-147.

P. N. Srinivasu, J. G. Sivasai, M. F. Ijaz, A. K. Bhoi, W. Kim, and J. J. Kang, “Classification of Skin Disease Using Deep Learning Neural Networks with MobileNet V2 and LSTM,” Sensors, vol. 21, no. 8, pp. 1–27, 2021, doi: 10.3390/s21082852.

N. S. Rahayu, A. D. Puteri, and L. M. A. Isnaeni, “Hubungan Perilaku Masyarakat Dan Penggunaan Air Sungai Dengan Gangguan Penyakit Kulit Di Desa Kampung Pinang Wilayah Kerja Puskesmas Pantai Raja,” J. Imliah Ilmu Kesehat., vol. 1, no. 3, p. 2023, 2023, doi: https://doi.org/10.31004/jiik.v2i1.23421.

W. Liang, “Toxicity and Effect of Chemicals in Skin Care Products on Human Health,” IOP Conf. Ser. Earth Environ. Sci., vol. 512, no. 1, 2020, doi: 10.1088/1755-1315/512/1/012081.

D. Novitasari, H. Akbar, A. Sutriyawan, Riswan, and H. Magdalena, “Analisis Jenis Kelamin, Riwayat Alergi, dan Personal Hygiene dengan Kejadian Dermatitis di Wilayah Kerja Puskesmas Passi Barat,” J. Keperawatan Cikini, vol. 4, no. 1, pp. 40–45, 2023, doi: https://doi.org/10.55644/jkc.v4i1.104.

R. Lestari, “Hubungan Sanitasi Lingkungan Dengan Gejala Penyakit Kulit Di Wilayah Kerja Puskesmas Sukamenanti Kabupaten Pasaman Barat,” Nan Tongga Heal. Nurs., vol. 17, no. 1, pp. 14–23, 2022, doi: 10.59963/nthn.v17i1.98.

O. A. Olusegun and B. S. Martincigh, “Allergic contact dermatitis: a significant environmental and occupational skin disease,” Int. J. Dermatol., vol. 60, no. 9, pp. 1082–1091, 2021, doi: 10.1111/ijd.15502.

P. D. Rinanda, D. N. Aini, T. A. Pertiwi, S. Suryani, and A. J. Prakash, “Implementation of Convolutional Neural Network (CNN) for Image Classification of Leaf Disease In Mango Plants Using Deep Learning Approach,” Public Res. J. Eng. Data Technol. Comput. Sci., vol. 1, no. 2, pp. 56–61, 2024, doi: 10.57152/predatecs.v1i2.872.

E. Goceri, “Diagnosis of skin diseases in the era of deep learning and mobile technology,” Comput. Biol. Med., vol. 134, p. 104458, 2021, doi: 10.1016/j.compbiomed.2021.104458.

B. Haritha, N. Ramya, S. Afrin, and U. B. Hepsibha, “Skin Disease Detection System Using Convolutional Neural Network,” Iarjset, vol. 11, no. 3, pp. 304–311, 2024, doi: 10.17148/iarjset.2024.11348.

A. C. Ramdhana and N. Pratiwi, “Perbandingan Kinerja Model Convolutional Neural Network pada Klasifikasi Kanker Kulit,” Edumatic J. Pendidik. Inform., vol. 7, no. 2, pp. 197–206, 2023, doi: https://doi.org/10.29408/edumatic.v7i2.19823.

D. Anastasya, S. Fahri, and S. Situmorang, “Implementasi Metode Convolutional Neural Network (CNN) Dalam Klasifikasi Motif Batik.,” Nuansa Inform., vol. 18, no. 1, pp. 1–5, 2024, doi: 10.25134/ilkom.v18i1.21.

Nabila Asryani Sundari, Rita Magladena, and Sofia Saidah, “Klasifikasi Jenis Kulit Wajah Menggunakan Metode Covolutional Neural Network (CNN) Efficientnet-B0,” e-Proceeding Eng., vol. 8, no. 6, pp. 3180–3187, 2022.

T. Nagaoka, “Hyperparameter optimization for deep learning-based automatic melanoma diagnosis system,” Adv. Biomed. Eng., vol. 9, pp. 225–232, 2020, doi: https://doi.org/10.14326/abe.9.225.

A. Abdellatif et al., “An Effective Heart Disease Detection and Severity Level Classification Model Using Machine Learning and Hyperparameter Optimization Methods,” IEEE Access, vol. 10, pp. 79974–79985, 2022, doi: 10.1109/ACCESS.2022.3191669.

Y. N. Kunang, S. Nurmaini, D. Stiawan, and B. Y. Suprapto, “Attack classification of an intrusion detection system using deep learning and hyperparameter optimization,” J. Inf. Secur. Appl., vol. 58, p. 102804, 2021, doi: 10.1016/j.jisa.2021.102804.

M. Elgendi et al., “The Effectiveness of Image Augmentation in Deep Learning Networks for Detecting COVID-19: A Geometric Transformation Perspective,” Front. Med., vol. 8, pp. 1–12, 2021, doi: 10.3389/fmed.2021.629134.

C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 1, 2019, doi: 10.1186/s40537-019-0197-0.

G. Shanqing, M. Pednekar, and R. Slater, “Improve Image Classification Using Data Augmentation and Neural Networks,” SMU Data Sci. Rev., vol. 2, no. 2, pp. 1–43, 2019, [Online]. Available: https://scholar.smu.edu/datasciencereviewhttp://digitalrepository.smu.edu.Availableat:https://scholar.smu.edu/datasciencereview/vol2/iss2/1

P. Kim, MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence. 2017. doi: 10.1007/978-1-4842-2845-6.

D. Hastari, S. Winanda, A. R. Pratama, N. Nurhaliza, and E. S. Ginting, “Application of Convolutional Neural Network ResNet-50 V2 on Image Classification of Rice Plant Disease,” Public Res. J. Eng. Data Technol. Comput. Sci., vol. 1, no. 2, pp. 71–77, 2024, doi: 10.57152/predatecs.v1i2.865.

H. Deng, W. X. Zhang, and Z. F. Liang, “Application of BP Neural Network and Convolutional Neural Network (CNN) in Bearing Fault Diagnosis,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1043, no. 4, pp. 1–7, 2021, doi: 10.1088/1757-899X/1043/4/042026.

G. W. Lindsay, “Convolutional neural networks as a model of the visual system: Past, present, and future,” J. Cogn. Neurosci., vol. 33, no. 10, pp. 2017–2031, 2021, doi: 10.1162/jocn_a_01544.

T. Bezdan and N. Ba?anin Džakula, “Convolutional Neural Network Layers and Architectures,” pp. 445–451, 2019, doi: 10.15308/sinteza-2019-445-451.

S. Indolia, A. K. Goswami, S. P. Mishra, and P. Asopa, “Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach,” Procedia Comput. Sci., vol. 132, pp. 679–688, 2018, doi: 10.1016/j.procs.2018.05.069.

Y. S. HARIYANI, S. HADIYOSO, and T. S. SIADARI, “Deteksi Penyakit Covid-19 Berdasarkan Citra X-Ray Menggunakan Deep Residual Network,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 8, no. 2, p. 443, 2020, doi: 10.26760/elkomika.v8i2.443.

A. Zafar et al., “A Comparison of Pooling Methods for Convolutional Neural Networks,” Appl. Sci., vol. 12, no. 17, pp. 1–21, 2022, doi: 10.3390/app12178643.

M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” 36th Int. Conf. Mach. Learn. ICML 2019, vol. 2019-June, pp. 10691–10700, 2019.

M. M. Islam, M. A. Talukder, M. A. Uddin, A. Akhter, and M. Khalid, “BrainNet: Precision Brain Tumor Classification with Optimized EfficientNet Architecture,” Int. J. Intell. Syst., vol. 2024, 2024, doi: 10.1155/2024/3583612.

Mohi Uddin Anando, Rabbi Hasan Himel, and Shifar Tanjam, “Enhancing the Identification of Brain Tumours Using the CNN Ensemble Model,” Malaysian J. Sci. Adv. Technol., vol. 4, no. 3, pp. 338–353, 2024, doi: 10.56532/mjsat.v4i3.264.

L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295–316, 2020, doi: 10.1016/j.neucom.2020.07.061.

Md Riyad Hossain and Dr. Douglas Timmer, “Machine Learning Model Optimization with Hyper Parameter Tuning Approach,” Glob. J. Comput. Sci. Technol., vol. 21, no. 2, pp. 1–1, 2021.

A. Gaspar, D. Oliva, E. Cuevas, D. Zaldívar, M. Pérez, and G. Pajares, “Hyperparameter Optimization in a Convolutional Neural Network Using Metaheuristic Algorithms,” Stud. Comput. Intell., vol. 967, no. 6, pp. 37–59, 2021, doi: 10.1007/978-3-030-70542-8_2.

M. Heydarian, T. E. Doyle, and R. Samavi, “MLCM: Multi-Label Confusion Matrix,” IEEE Access, vol. 10, pp. 19083–19095, 2022, doi: 10.1109/ACCESS.2022.3151048.

M. M. Mijwil, “Skin cancer disease images classification using deep learning solutions,” Multimed. Tools Appl., vol. 80, no. 17, pp. 26255–26271, 2021, doi: 10.1007/s11042-021-10952-7.

W. Gouda, N. U. Sama, G. Al-Waakid, M. Humayun, and N. Z. Jhanjhi, “Detection of Skin Cancer Based on Skin Lesion Images Using Deep Learning,” Healthcare, vol. 10, pp. 1–18, 2022, doi: https://doi.org/10.3390/healthcare10071183.

Downloads

Published

2025-01-19

How to Cite

Khairunnisa, P., Putra, W. E., Yitong, W., Jufrizal, A., & Makmum, M. N. A. (2025). Convolutional Neural Networks Using EfficientNetB0 Architecture and Hyperparameters on Skin Disease Classification. Public Research Journal of Engineering, Data Technology and Computer Science, 2(2), 127-137. https://doi.org/10.57152/predatecs.v2i2.1569