Comparative Analysis of Weather Image Classification Using CNN Algorithm with InceptionV3, DenseNet169 and NASNetMobile Architecture Models

Authors

  • Vina Wulandari Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Windy Junita Sari Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Zaid Husham Al-Sawaff Center of Technical Research Northern Technical University Mosul, Iraq
  • Selvakumar Manickam University Sains Malaysia, Malaysia

DOI:

https://doi.org/10.57152/predatecs.v2i2.1608

Keywords:

Convolutional Neural Networks, DenseNet169, Inception V3, NASNetMobile, Weather

Abstract

Rapid weather changes have a significant impact on various aspects of human life, including social and economic development. Weather analysis traditionally relies on data from Doppler radar, weather satellites, and weather balloons. However, advancements in computer vision technology provide new opportunities to enhance weather prediction systems through image recognition and classification. Studies evaluating and comparing deep learning architectures for weather image classification remain limited.This research utilizes Convolutional Neural Networks (CNN) to classify weather images using three architectures: InceptionV3, DenseNet169, and NASNetMobile. The results show that InceptionV3 achieved 97.94% accuracy on training data, 92.34% on validation data, and 93.81% on test data. DenseNet169 achieved 98.09% accuracy on training data, 88.46% on validation data, and 92.33% on test data. NASNetMobile achieved 96.51% accuracy on training data, 87.82% on validation data, and 89.97% on test data. Based on these results, InceptionV3 is the optimal choice for weather classification due to its consistent performance.This research addresses the gap in evaluating CNN architectures for weather data and contributes to improving weather monitoring systems, early disaster warnings, and applications reliant on accurate predictions. These findings also provide a foundation for the development of advanced technologies in image analysis and weather forecasting in the future.

References

T. Q. Nam, “Evaluation of Stacked Ensemble Model on Weather Image Recognition,” Procedia Comput Sci, vol. 234, no. 2023, pp. 1664–1671, 2024, doi: 10.1016/j.procs.2024.03.171.

K. Purwandari, J. W. C. Sigalingging, A. A. Hidayat, T. W. Cenggoro, and B. Pardamean, “Implementation of Computer Vision of Jakarta Weather Image Categorization Using ResNet,” Procedia Comput Sci, vol. 227, pp. 813–822, 2023, doi: 10.1016/j.procs.2023.10.587.

H. Mo and G. Zhao, “RIC-CNN: Rotation-Invariant Coordinate Convolutional Neural Network,” Pattern Recognit, vol. 146, no. June 2023, p. 109994, 2024, doi: 10.1016/j.patcog.2023.109994.

N. Zaeri and R. Qasim, “Thermal image identification against pose and expression variations using deep learning,” Journal of Engineering Research (Kuwait), no. October, 2024, doi: 10.1016/j.jer.2023.10.043.

M. M. Mashamba, A. Telukdarie, I. Munien, U. Onkonkwo, and A. Vermeulen, “ScienceDirect ScienceDirect Detection of bacterial spot disease on tomato leaves using a Detection of bacterial spot disease on tomato leaves using a Convolutional Neural Network ( CNN ) Convolutional Neural Network ( CNN ),” Procedia Comput Sci, vol. 237, pp. 602–609, 2024, doi: 10.1016/j.procs.2024.05.145.

V. Kukreja, R. Sharma, and R. Yadav, “Multi-Weather Classification using Deep Learning: A CNN-SVM Amalgamated Approach,” 2023 World Conference on Communication & Computing (WCONF), pp. 1–5, Sep. 2023.

S. Mittal and O. P. Sangwan, “Classifying Weather Images using Deep Neural Networks for Large Scale Datasets.” [Online]. Available: www.ijacsa.thesai.org

P. D. Rinanda, D. N. Aini, T. A. Pertiwi, S. Suryani, and A. J. Prakash, “Implementation of Convolutional Neural Network (CNN) for Image Classification of Leaf Disease In Mango Plants Using Deep Learning Approach,” Public Research Journal of Engineering, Data Technology and Computer Science, vol. 1, no. 2, pp. 56–61, Feb. 2024, doi: 10.57152/predatecs.v1i2.872.

N. Pratama et al., “Perbandingan Model Klasifikasi Transfer Learning Convolutional Neural Network Tumor Otak Menggunakan Citra Magnetic Resonance Imaging,” Jurnal Sehat Indonesia, vol. 6, no. 1, 2024.

A. Fuadi et al., “Perbandingan Arsitektur MobileNet dan NASNetMobile untuk Klasifikasi Penyakit Pada Citra Daun Kentang,” Sep. 2022. doi: https://doi.org/10.29100/jipi.v7i3.3026.

L. E. Boucheron, T. Vincent, J. A. Grajeda, and E. Wuest, “Solar active region magnetogram image dataset for studies of space weather,” pp. 1–13, 2023, doi: 10.1038/s41597-023-02628-8.

V. Wulandari, W. J. Sari, Z. Alfian, L. Legito, and T. Arifianto, “Implementasi Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor untuk Klasifikasi Penyakit Ginjal Kronik,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 2, pp. 710–718, 2024, doi: 10.57152/malcom.v4i2.1229.

W. J. Sari et al., “Performance Comparison of Random Forest, Support Vector Machine and Neural Network in Health Classification of Stroke Patients,” Public Research Journal of Engineering, Data Technology and Computer Science, vol. 2, no. 1, pp. 34–43, 2024, doi: 10.57152/predatecs.v2i1.1119.

E. Oluwasakin et al., “Minimization of high computational cost in data preprocessing and modeling using MPI4Py,” Machine Learning with Applications, vol. 13, no. May, p. 100483, 2023, doi: 10.1016/j.mlwa.2023.100483.

A. Ahmad, X. Xiao, H. Mo, and D. Dong, “Tuning data preprocessing techniques for improved wind speed prediction,” Energy Reports, vol. 11, no. September 2023, pp. 287–303, 2024, doi: 10.1016/j.egyr.2023.11.056.

A. Zompola, A. Korfiati, K. Theofilatos, and S. Mavroudi, “Heliyon Omics-CNN?: A comprehensive pipeline for predictive analytics in quantitative omics using one-dimensional convolutional neural networks,” Heliyon, vol. 9, no. 11, p. e21165, 2023, doi: 10.1016/j.heliyon.2023.e21165.

D. Bhagat, A. Vakil, R. Kumar, and A. Kumar, “ScienceDirect ScienceDirect Facial Emotion Recognition ( FER ) using Convolutional Neural Network ( CNN ),” Procedia Comput Sci, vol. 235, no. 2023, pp. 2079–2089, 2024, doi: 10.1016/j.procs.2024.04.197.

T. Islam, S. Hafiz, J. Rahman, M. Kabir, and M. F. Mridha, “Healthcare Analytics A systematic review of deep learning data augmentation in medical imaging?: Recent advances and future research directions,” Healthcare Analytics, vol. 5, no. December 2023, p. 100340, 2024, doi: 10.1016/j.health.2024.100340.

X. Liu, K. Ono, and R. Bise, “A data augmentation approach that ensures the reliability of foregrounds in medical image segmentation,” Image Vis Comput, vol. 147, no. February, p. 105056, 2024, doi: 10.1016/j.imavis.2024.105056.

J. Sanjaya and M. Ayub, “Augmentasi Data Pengenalan Citra Mobil Menggunakan Pendekatan Random Crop, Rotate, dan Mixup,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 2, pp. 311–323, 2020, doi: 10.28932/jutisi.v6i2.2688.

Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects,” IEEE Trans Neural Netw Learn Syst, vol. 33, no. 12, pp. 6999–7019, 2022, doi: 10.1109/TNNLS.2021.3084827.

A. Karthikeyan, S. Jothilakshmi, and S. Suthir, “Measurement?: Sensors Colorectal cancer detection based on convolutional neural networks ( CNN ) and ranking algorithm,” Measurement: Sensors, vol. 31, no. November 2023, p. 100976, 2024, doi: 10.1016/j.measen.2023.100976.

N. Islam, S. Mekhilef, H. Pota, and M. A. Abido, “Fault classification and location of a PMU-equipped active distribution network using deep convolution neural network ( CNN ),” Electric Power Systems Research, vol. 229, no. January, p. 110178, 2024, doi: 10.1016/j.epsr.2024.110178.

M. F. A. Ilhami and S. Wibisono, “Klasifikasi Rimpang Menggunakan Metode Jaringan Saraf Konvolusi Dengan Arsitektur Alexnet,” INTECOMS: Journal of Information Technology and Computer Science, vol. 6, no. 2, pp. 666–670, 2023, doi: 10.31539/intecoms.v6i2.6634.

K. Joshi, V. Tripathi, C. Bose, and C. Bhardwaj, “Robust Sports Image Classification Using InceptionV3 and Neural Networks,” Procedia Comput Sci, vol. 167, no. Iccids 2019, pp. 2374–2381, 2020, doi: 10.1016/j.procs.2020.03.290.

P. Pradeep, D. Damodar, and R. Edla, “Diagnosis of Coronavirus Disease From Chest X Ray Images Using DenseNet 169 Architecture,” SN Comput Sci, vol. 4, no. 3, pp. 1–6, 2023, doi: 10.1007/s42979-022-01627-7.

P. Enkvetchakul and O. Surinta, “Effective Data Augmentation and Training Techniques for Improving Deep Learning in Plant Leaf Disease Recognition Effective Data Augmentation and Training Techniques for Improving Deep Learning in Plant Leaf Disease Recognition,” no. March 2021, 2022, doi: 10.14416/j.asep.2021.01.003.

M. Rajesh, B. Senapati, R. Das, and S. Martha, “Identifying Colorectal Tumor for Single Cell RNA Sequence Using Rectified Linear Unit with Stochastic Gradient Descent,” Procedia Comput Sci, vol. 218, pp. 189–198, 2022, doi: 10.1016/j.procs.2023.01.001.

D. Armiady and I. Muslem R, “Klasifikasi Kualitas Buah Pisang Berdasarkan Citra Buah Menggunakan Stochastic Gradient Descent,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 2, pp. 1207–1215, 2023, doi: 10.30865/klik.v4i2.1243.

P. Wang, Y. Lei, Y. Ying, and D. X. Zhou, “Differentially private stochastic gradient descent with low-noise,” Neurocomputing, vol. 585, no. March 2023, p. 127557, 2024, doi: 10.1016/j.neucom.2024.127557.

D. Hastari, S. Winanda, A. R. Pratama, N. Nurhaliza, and E. S. Ginting, “Application of Convolutional Neural Network ResNet-50 V2 on Image Classification of Rice Plant Disease,” Public Research Journal of Engineering, Data Technology and Computer Science, vol. 1, no. 2, Feb. 2024, doi: 10.57152/predatecs.v1i2.865.

A. H. Nasrullah, “Implementasi Algoritma Decision Tree Untuk Klasifikasi Data Peserta Didik,” Jurnal Pilar Nusa Mandiri, vol. 7, no. 2, p. 217, 2021.

N. D. Miranda, L. Novamizanti, and S. Rizal, “Convolutional Neural Network Pada Klasifikasi Sidik Jari Menggunakan Resnet-50,” Jurnal Teknik Informatika (Jutif), vol. 1, no. 2, pp. 61–68, 2020, doi: 10.20884/1.jutif.2020.1.2.18.

Y. Hao and Y. Zhu, “Weather Classification for Multi-class Weather Image Based on CNN,” 2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE), pp. 363–366, 2022.

A. Sharma and Z. Saad Ismail, “Weather Classification Model Performance: Using CNN, Keras-Tensor Flow,” ITM Web of Conferences, vol. 42, p. 01006, 2022, doi: 10.1051/itmconf/20224201006.

Downloads

Published

2025-01-12