Sentiment Analysis of Twitter Reviews on Google Play Store Using a Combination of Convolutional Neural Network and Long Short-Term Memory Algorithms

Authors

  • Meriana Prihati Ningrum Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Risma Mutia Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Habil Azmi Al-Azhar University, Egypt
  • Habibah Dian Khalifah Dokuz Eylul University, Turkey

DOI:

https://doi.org/10.57152/predatecs.v2i2.1625

Keywords:

Convolutional Neural Network, Google Play Store, Long Short-Term Memory, Sentiment Analysis

Abstract

In this era of rapidly evolving technology, the use of social media has become widespread and has become a major platform for sharinhabibahdian.khalifah@ogr.deu.edu.trg people's opinions and views. Google Play Store, as one of the main platforms for digital content, provides access to various applications including Twitter, which allows users to provide reviews and ratings. This research aims to conduct sentiment analysis of Twitter reviews on the Google Play Store using two algorithms namely Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). The data used is 4999 reviews after the scraping process. From the experimental results, an accuracy value of 84.67%, recall of 81%, and precision of 84% were obtained on CNN, and an accuracy of 82.19% recall of 69%, and precision of 87% on LSTM. From these results, it can be seen that the highabibahdian.khalifah@ogr.deu.edu.trhest accuracy value is obtained in the CNN algorithm. Although the difference in accuracy is small, the CNN algorithm provides better results in classifying sentiment analysis data on Twitter reviews on the Google Play Store.

References

A. A. Mudding and A. A. Abd Karim, “Analisis Sentimen Menggunakan Algoritma Lstm Pada Media Sosial,” Jurnal Publikasi Ilmu Komputer dan Multimedia, vol. 1, no. 3, pp. 181–187, 2022. DOI: https://doi.org/10.55606/jupikom.v1i3.517

A. F. Hidayatullah, S. Cahyaningtyas, and A. M. Hakim, "Sentiment analysis on Twitter using neural network: Indonesian presidential election 2019 dataset," in IOP conference series: materials science and engineering, IOP Publishing, 2021, p. 012001. DOI 10.1088/1757-899X/1077/1/012001

N. Agustina, D. H. Citra, W. Purnama, C. Nisa, and A. R. Kurnia, “Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store: The Implementation of Naïve Bayes Algorithm for Sentiment Analysis of Shopee Reviews On Google Play Store,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 2, no. 1, pp. 47–54, 2022. DOI: https://doi.org/10.57152/malcom.v2i1.195.

K. M. Elistiana, B. A. Kusuma, P. Subarkah, and H. A. A. Rozaq, “Improvement Of Naive Bayes Algorithm In Sentiment Analysis Of Shopee Application Reviews On Google Play Store,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 6, pp. 1431–1436, 2023. DOI: https://doi.org/10.52436/1.jutif.2023.4.6.1486

G. K. Nathanael, “Understanding recession response by Twitter users: A text analysis approach,” Heliyon, vol. 10, no. 1, 2024. Doi: https://doi.org/10.1016/j.heliyon.2023.e23737

R. I. Alhaqq, I. M. K. Putra, and Y. Ruldeviyani, “Analisis Sentimen terhadap Penggunaan Aplikasi MySAPK BKN di Google Play Store,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 11, no. 2, 2022. Doi:https://doi.org/10.22146/jnteti.v11i2.3528

K. Kuralová, K. Zychová, L. K. Stanislavská, L. Pila?ová, and L. Pila?, “Work-Life Balance Twitter Insights: A Social Media Analysis Before and After COVID-19 Pandemic,” Heliyon, 2024. Doi: https://doi.org/10.1016/j.heliyon.2024.e33388

M. Wankhade, A. C. S. Rao, and C. Kulkarni, “A survey on sentiment analysis methods, applications, and challenges,” Artif Intell Rev, vol. 55, no. 7, pp. 5731–5780, 2022. https://doi.org/10.1007/s10462-022-10144-1

S. Alghamdi and Y. Alhasawi, “Aspect-Based Sentiment Analysis in Smart Devices: A Comprehensive and Specialized Dataset,” Data Brief, p. 110642, 2024. Doi:https://doi.org/10.1016/j.dib.2024.110642

I. Priyadarshini and C. Cotton, “A novel LSTM–CNN–grid search-based deep neural network for sentiment analysis,” J Supercomput, vol. 77, no. 12, pp. 13911–13932, 2021. Doi: https://doi.org/10.1007/s11227-021-03838-w

P. F. Muhammad, R. Kusumaningrum, and A. Wibowo, “Sentiment analysis using Word2vec and long short-term memory (LSTM) for Indonesian hotel reviews,” Procedia Comput Sci, vol. 179, pp. 728–735, 2021. Doi:https://doi.org/10.1016/j.procs.2021.01.061

S. C. M. D. S. Sirisuriya, “Importance of Web Scraping as a Data Source for Machine Learning Algorithms - Review,” in 2023 IEEE 17th International Conference on Industrial and Information Systems, ICIIS 2023 - Proceedings, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 134–139. doi: 10.1109/ICIIS58898.2023.10253502.

L. van Wassenaer, C. Verdouw, A. Kassahun, M. van Hilten, K. van der Meij, and B. Tekinerdogan, “Tokenizing circularity in agri-food systems: A conceptual framework and exploratory study,” J Clean Prod, vol. 413, Aug. 2023, doi: 10.1016/j.jclepro.2023.137527.

D. G. Rasines and G. A. Young, “Splitting strategies for post-selection inference,” Biometrika, vol. 110, no. 3, pp. 597–614, Sep. 2023, doi: 10.1093/biomet/asac070.

Z. Li, H. Yu, J. Xu, J. Liu, and Y. Mo, “Stock Market Analysis and Prediction Using LSTM: A Case Study on Technology Stocks,” Innovations in Applied Engineering and Technology, pp. 1–6, Nov. 2023, doi: 10.62836/iaet.v2i1.162.

Ü. A?bulut, A. E. Gürel, and Y. Biçen, “Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison,” Renewable and Sustainable Energy Reviews, vol. 135, Jan. 2021, doi: 10.1016/j.rser.2020.110114.

J. Sharma and N. Mehta, “Is Gamification a Proactive Method for Learning and Generating Motivation to the Young Generation Community,” 2023. [Online]. Available: https://www.researchgate.net/publication/379696414.Doi:https://www.researchgate.net/publication/379696414

S. Granvik, “Open-source dog breed identification using CNN Explanation of the development & underlying technological specifications,” 2023.

J. Cui, Z. Wang, S. B. Ho, and E. Cambria, “Survey on sentiment analysis: evolution of research methods and topics,” Artif Intell Rev, vol. 56, no. 8, pp. 8469–8510, Aug. 2023, doi: 10.1007/s10462-022-10386-z.

G. Kaur and A. Sharma, “A deep learning-based model using hybrid feature extraction approach for consumer sentiment analysis,” J Big Data, vol. 10, no. 1, Dec. 2023, doi: 10.1186/s40537-022-00680-6.

Y. Qi and Z. Shabrina, “Sentiment analysis using Twitter data: a comparative application of lexicon- and machine-learning-based approach,” Soc Netw Anal Min, vol. 13, no. 1, Dec. 2023, doi: 10.1007/s13278-023-01030-x.

T. Kattenborn, J. Leitloff, F. Schiefer, and S. Hinz, “Review on Convolutional Neural Networks (CNN) in vegetation remote sensing,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 173. Elsevier B.V., pp. 24–49, Mar. 01, 2021. doi: 10.1016/j.isprsjprs.2020.12.010.

M. A. Khan, H. Park, and J. Chae, “A Lightweight Convolutional Neural Network (CNN) Architecture for Traffic Sign Recognition in Urban Road Networks,” Electronics (Switzerland), vol. 12, no. 8, Apr. 2023, doi: 10.3390/electronics12081802. Doi: https://doi.org/10.3390/electronics12081802

B. Kabra and C. Nagar, “SCIENCE& TECHNOLOGY Convolutional Neural Network Based Sentiment Analysis With TF-IDF Based Vectorization,” 2023. [Online]. Available: http://pubs.thesciencein.org/jist

U. D. Gandhi, P. Malarvizhi Kumar, G. Chandra Babu, and G. Karthick, “Sentiment Analysis on Twitter Data by Using Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM),” Wirel Pers Commun, 2021, doi: 10.1007/s11277-021-08580-3.

A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network,” Aug. 2023, doi: 10.1016/j.physd.2019.132306.

K. Xia, J. Huang, and H. Wang, “LSTM-CNN architecture for human activity recognition,” IEEE Access, vol. 8, pp. 56855–56866, 2020. Doi: K. Xia, J. Huang, and H. Wang, "LSTM-CNN architecture for human activity recognition," IEEE Access, vol. 8, pp. 56855-56866, 2020. Doi:https://doi.org/10.1109/ACCESS.2020.2982225

S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon, and K. P. Soman, “Stock price prediction using LSTM, RNN and CNN-sliding window model,” in 2017 international conference on advances in computing, communications and informatics (icacci), 2017, pp. 1643–1647. Doi:https://doi.org/10.1109/ICACCI.2017.8126078

Z. C. Dwynne, Mustakim and Mustafa, "Comparison Of Machine Learning Algorithms On Sentiment Analysis Of Elsagate Content," 2024 International Conference on Smart Computing, IoT and Machine Learning (SIML), Surakarta, Indonesia, 2024, pp. 239-243, doi: 10.1109/SIML61815.2024.10578186.

Downloads

Published

2025-01-12