Classification of Breast Cancer Ultrasound Images Using Convolutional Neural Network

Authors

  • Rifsya Aulia Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Dina Pani Safira Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Khaury Audilla Al-Azhar University, Egypt
  • Raudhatul Khairiyah Al-Azhar University

DOI:

https://doi.org/10.57152/predatecs.v3i2.2104

Keywords:

Breast Cancer, Convolutional Neural Network, MobileNetV2, ResNet50V2, Ultrasound Images

Abstract

Breast cancer ranks among the primary contributors to female mortality, thereby underscoring the critical importance of early detection. This research employs a deep learning approach based on Convolutional Neural Networks (CNNs) to classify breast cancer using ultrasound imagery, comparing the ResNet50V2 and MobileNetV2 architectures with three optimizers: Adam, RMSprop, and SGDM. The dataset used in this study is the Breast Ultrasound Images (BUSI) dataset, obtained from Kaggle, which comprises three diagnostic categories: benign, malignant, and normal. The research workflow encompassed several stages, including data acquisition, image pre-processing involving normalization and augmentation, and dataset partitioning using the Holdout Split method, with proportions of 70% for training, 15% for validation, and 15% for testing. The experimental findings revealed that the ResNet50V2 architecture combined with the SGDM optimizer achieved the best performance, recording accuracy, precision, recall, and F1-score values of 92%. Meanwhile, MobileNetV2 with RMSprop achieved the highest performance on its architecture with 86% accuracy, 88% precision, 86% recall, and 86% F1-score. These findings prove that CNN architecture selection and optimization algorithms have a significant influence on medical image classification performance.

References

A. Ciobotaru, M. A. Bota, D. I. Go?a, and L. C. Miclea, “Multi-Instance Classification of Breast Tumor Ultrasound Images Using Convolutional Neural Networks and Transfer Learning,” Bioengineering, vol. 10, no. 12, 2023, doi: 10.3390/bioengineering10121419.

M. M. Labonno, D. M. Asadujjaman, M. M. Rahman, A. Tamim, M. J. Ferdous, and R. M. Mahi, “Early Detection and Classification of Breast Cancer Using Deep Learning Techniques,” 2025, doi: 10.1109/ICMSCI62561.2025.10894099.

K. J. Vijetha and S. S. Sathya Priya, “A Comparative Analysis of CNN Architectures and Regularization Techniques for Breast Cancer Classification in Mammograms,” Ing. des Syst. d’Information, vol. 29, no. 6, pp. 2433–2441, 2024, doi: 10.18280/isi.290630.

S. Shilaskar et al., “Classification and Segmentation of Breast Tumor Ultrasound Images using VGG-16 and UNet,” Biomed. Pharmacol. J., vol. 18, no. 1, pp. 569–580, 2025, doi: 10.13005/bpj/3109.

W. Al-Dhabyani, A. Fahmy, M. Gomaa, and H. Khaled, “Deep learning approaches for data augmentation and classification of breast masses using ultrasound images,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5, pp. 618–627, 2019, doi: 10.14569/ijacsa.2019.0100579.

M. Masud, A. E. Eldin Rashed, and M. S. Hossain, “Convolutional neural network-based models for diagnosis of breast cancer,” Neural Comput. Appl., vol. 34, no. 14, pp. 11383–11394, 2022, doi: 10.1007/s00521-020-05394-5.

M. D. P, M. A, Y. Ali, and S. V, “Effective BCDNet-based breast cancer classification model using hybrid deep learning with VGG16-based optimal feature extraction,” BMC Med. Imaging, vol. 25, no. 1, p. 12, 2025, doi: 10.1186/s12880-024-01538-4.

B. S. Abunasser, M. R. J. AL-Hiealy, I. S. Zaqout, and S. S. Abu-Naser, “Convolution Neural Network for Breast Cancer Detection and Classification Using Deep Learning,” Asian Pacific J. Cancer Prev., vol. 24, no. 2, pp. 531–544, 2023, doi: 10.31557/APJCP.2023.24.2.531.

H. A. H. Mahmoud, A. H. Alharbi, and D. S. Khafga, “Breast cancer classification using deep convolution neural network with transfer learning,” Intell. Autom. Soft Comput., vol. 29, no. 3, pp. 803–814, 2021, doi: 10.32604/iasc.2021.018607.

S. A. Alanazi et al., “Boosting Breast Cancer Detection Using Convolutional Neural Network,” J. Healthc. Eng., vol. 2021, 2021, doi: 10.1155/2021/5528622.

S. Zakareya, H. Izadkhah, and J. Karimpour, “A New Deep-Learning-Based Model for Breast Cancer Diagnosis from Medical Images,” Diagnostics, vol. 13, no. 11, pp. 1–23, 2023, doi: 10.3390/diagnostics13111944.

K. Jabeen et al., “Breast Cancer Classification from Ultrasound Images Using Probability?Based Optimal Deep Learning Feature Fusion,” Sensors, vol. 22, no. 3, 2022, doi: 10.3390/s22030807.

O. Bin Naeem and Y. Saleem, “CSA-Net: Channel and Spatial Attention-Based Network for Mammogram and Ultrasound Image Classification,” J. Imaging, vol. 10, no. 10, 2024, doi: 10.3390/jimaging10100256.

M. Latha, P. S. Kumar, R. R. Chandrika, T. R. Mahesh, V. V. Kumar, and S. Guluwadi, “Revolutionizing breast ultrasound diagnostics with EfficientNet-B7 and Explainable AI,” BMC Med. Imaging, vol. 24, no. 1, 2024, doi: 10.1186/s12880-024-01404-3.

S. Balasubramaniam, Y. Velmurugan, D. Jaganathan, and S. Dhanasekaran, “A Modified LeNet CNN for Breast Cancer Diagnosis in Ultrasound Images,” Diagnostics, vol. 13, no. 17, pp. 1–28, 2023, doi: 10.3390/diagnostics13172746.

M. F. Mridha et al., “A comprehensive survey on deep-learning-based breast cancer diagnosis,” Cancers (Basel)., vol. 13, no. 23, pp. 1–36, 2021, doi: 10.3390/cancers13236116.

G. Murtaza et al., “Deep learning-based breast cancer classification through medical imaging modalities: state of the art and research challenges,” Artif. Intell. Rev., vol. 53, no. 3, pp. 1655–1720, 2020, doi: 10.1007/s10462-019-09716-5.

K. Davoudi and P. Thulasiraman, “Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem,” Simulation, vol. 97, no. 8, pp. 511–527, 2021, doi: 10.1177/0037549721996031.

E. Y. Kalafi et al., “Classification of breast cancer lesions in ultrasound images by using attention layer and loss ensemble in deep convolutional neural networks,” Diagnostics, vol. 11, no. 10, 2021, doi: 10.3390/diagnostics11101859.

A. AlZoubi, F. Lu, Y. Zhu, T. Ying, M. Ahmed, and H. Du, “Classification of breast lesions in ultrasound images using deep convolutional neural networks: transfer learning versus automatic architecture design,” Med. Biol. Eng. Comput., vol. 62, no. 1, pp. 135–149, 2024, doi: 10.1007/s11517-023-02922-y.

M. Kaddes, Y. M. Ayid, A. M. Elshewey, and Y. Fouad, “Breast cancer classification based on hybrid CNN with LSTM model,” Sci. Rep., vol. 15, no. 1, pp. 1–14, 2025, doi: 10.1038/s41598-025-88459-6.

F. Noviandini, B. M. Darmawan, R. W. Agustin, and Endarko, “Breast cancer malignancy classification based on breast histopathology images using convolutional neural network,” AIP Conf. Proc., vol. 2542, no. 1, p. 50012, Nov. 2022, doi: 10.1063/5.0103186.

L. Mangeri, O. S. Gnana Prakasi, P. Kanmani, and N. Puppala, “Chest Diseases Prediction from X-ray Images using CNN Models: A Study,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 10, pp. 236–243, 2021, doi: 10.14569/IJACSA.2021.0121026.

A. Keshary Shah, J. Kabore, S. Tarun Sasikumar, and A. Surya, “Enhanced Breast Cancer Tumor Classification using MobileNetV2: A Detailed Exploration on Image Intensity, Error Mitigation, and Streamlit-driven Real-time Deployment,” 2023.

M. R. Ferreira et al., “Deep Learning Networks for Breast Lesion Classification in Ultrasound Images: A Comparative Study.,” Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Int. Conf., vol. 2023, pp. 1–4, Jul. 2023, doi: 10.1109/EMBC40787.2023.10340293.

W. Al-Dhabyani, M. Gomaa, H. Khaled, and A. Fahmy, “Dataset of breast ultrasound images,” Data Br., vol. 28, p. 104863, 2020, doi: 10.1016/j.dib.2019.104863.

Kaggle, “No Title.” [Online]. Available: https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset

G. Ayana and S. W. Choe, “BUViTNet: Breast Ultrasound Detection via Vision Transformers,” Diagnostics, vol. 12, no. 11, pp. 1–14, 2022, doi: 10.3390/diagnostics12112654.

A. Sulaiman et al., “Attention based UNet model for breast cancer segmentation using BUSI dataset,” Sci. Rep., vol. 14, no. 1, p. 22422, 2024, doi: 10.1038/s41598-024-72712-5.

M. Masud, A. E. Eldin Rashed, and M. S. Hossain, “Convolutional neural network-based models for diagnosis of breast cancer,” Neural Comput. Appl., vol. 34, no. 14, pp. 11383–11394, 2022, doi: 10.1007/s00521-020-05394-5.

O. N. Oyelade and A. E. S. Ezugwu, “A State-of-the-Art Survey on Deep Learning Methods for Detection of Architectural Distortion from Digital Mammography,” IEEE Access, vol. 8, pp. 148644–148676, 2020, doi: 10.1109/ACCESS.2020.3016223.

M. Salim et al., “External Evaluation of 3 Commercial Artificial Intelligence Algorithms for Independent Assessment of Screening Mammograms,” JAMA Oncol., vol. 6, no. 10, pp. 1581–1588, 2020, doi: 10.1001/jamaoncol.2020.3321.

B. Shareef, M. Xian, A. Vakanski, and H. Wang, “Breast Ultrasound Tumor Classification Using a Hybrid Multitask CNN-Transformer Network,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 14223 LNCS, pp. 344–353, 2023, doi: 10.1007/978-3-031-43901-8_33.

A. Nasiri-Sarvi, M. S. Hosseini, and H. Rivaz, “Vision Mamba for Classification of Breast Ultrasound Images,” pp. 1–11, 2024, [Online]. Available: http://arxiv.org/abs/2407.03552

V. Wulandari, W. J. Sari, Z. H. Al-sawaff, and S. Manickam, “Comparative Analysis of Weather Image Classification Using CNN Algorithm with InceptionV3 , DenseNet169 and NASNetMobile Architecture Models,” vol. 2, no. January, pp. 81–92, 2025.

A. B. M. A. Hossain, J. K. Nisha, and F. Johora, “Breast Cancer Classification from Ultrasound Images using VGG16 Model based Transfer Learning,” Int. J. Image, Graph. Signal Process., vol. 15, no. 1, pp. 12–22, 2023, doi: 10.5815/ijigsp.2023.01.02.

F. Uysal and M. M. Köse, “Classification of Breast Cancer Ultrasound Images with Deep Learning-Based Models †,” Eng. Proc., vol. 31, no. 1, 2022, doi: 10.3390/ASEC2022-13791.

J. F. Lazo, S. Moccia, E. Frontoni, and E. de Momi, “Comparison of different CNNs for breast tumor classification from ultrasound images,” Convegno Naz. di Bioingegneria, pp. 560–563, 2020.

Downloads

Published

2026-01-31

How to Cite

Aulia, R., Safira, D. P., Audilla, K., & Raudhatul Khairiyah. (2026). Classification of Breast Cancer Ultrasound Images Using Convolutional Neural Network. Public Research Journal of Engineering, Data Technology and Computer Science, 3(2), 100-112. https://doi.org/10.57152/predatecs.v3i2.2104