Classification of Corn Leaf Disease Images Using Convolutional Neural Network Algorithm
DOI:
https://doi.org/10.57152/predatecs.v3i2.2105Keywords:
Convolutional Neural Network, Corn Leaf Disease, Deep Learning, Plant Disease DetectionAbstract
Corn leaf diseases can reduce crop yields and cause financial losses, thus requiring accurate and objective classification methods. This study aims to classify four corn leaf conditions, namely Blight, Common Rust, Gray Leaf Spot, and healthy leaves, using a Convolutional Neural Network (CNN) approach based on image processing. A systematic comparative evaluation was conducted on three CNN architectures, namely MobileNetV2, ResNet50V2, and DenseNet201, by examining the effect of architecture-optimizer pairs using Adam and RMSprop to determine the optimal model configuration. The results showed that the proposed approach was effective in classifying corn leaf diseases, with the highest accuracy of 93% achieved by the combination of DenseNet201 and the Adam optimizer. This study contributes by providing a structured comparative analysis of the performance of CNN architectures and optimizers as a reference for the development of more accurate and efficient early detection systems for plant diseases.
References
M. M. Malik et al., “A novel deep CNN model with entropy coded sine cosine for corn disease classification,” J. King Saud Univ. - Comput. Inf. Sci., vol. 36, no. 7, p. 102126, 2024, doi: 10.1016/j.jksuci.2024.102126.
J. T. Elekterika et al., “Klasifikasi Penyakit Tanaman Jagung Melalui Citra Daun Dengan Menggunakan Metode Deep Learning,” vol. x, no. x.
I. Khan, S. S. Sohail, D. Ø. Madsen, and B. K. Khare, “Deep transfer learning for fine-grained maize leaf disease classification,” J. Agric. Food Res., vol. 16, no. September 2023, 2024, doi: 10.1016/j.jafr.2024.101148.
N. Nigar, H. Muhammad Faisal, M. Umer, O. Oki, and J. Manappattukunnel Lukose, “Improving Plant Disease Classification with Deep-Learning-Based Prediction Model Using Explainable Artificial Intelligence,” IEEE Access, vol. 12, no. July, pp. 100005–100014, 2024, doi: 10.1109/ACCESS.2024.3428553.
G. Gumelar et al., “Jurnal Computer Science and Information Technology ( CoSciTech ) Implentation of CNN for Corn Leaf Disease Identification,” vol. 6, no. 2, pp. 175–180, 2025.
A. D. Nurcahyati, R. M. Akbar, and S. Zahara, “Klasifikasi Citra Penyakit pada Daun Jagung Menggunakan Deep Learning dengan Metode Convolution Neural Network (CNN),” SUBMIT J. Ilm. Teknol. Infomasi dan Sains, vol. 2, no. 2, pp. 43–51, 2022, doi: 10.36815/submit.v2i2.1877.
S. Babu, M. Maravarman, and R. Pitchai, “Detection of Rice Plant Disease Using Deep Learning Techniques,” J. Mob. Multimed., vol. 18, no. 3, pp. 757–770, 2022, doi: 10.13052/jmm1550-4646.18314.
A. T. Mengesha and M. A. Mengistie, “Applying transfer learning in CNN model architectures for detecting tomato leaf disease with explainable artificial intelligence,” Smart Agric. Technol., vol. 11, no. May, p. 101034, 2025, doi: 10.1016/j.atech.2025.101034.
A. Chakrabarty, S. T. Ahmed, M. F. U. Islam, S. M. Aziz, and S. S. Maidin, “An interpretable fusion model integrating lightweight CNN and transformer architectures for rice leaf disease identification,” Ecol. Inform., vol. 82, no. July, p. 102718, 2024, doi: 10.1016/j.ecoinf.2024.102718.
A. B. Prakosa, Hendry, and R. Tanone, “Implementasi Model Deep Learning Convolutional Neural Network (CNN) Pada Citra Penyakit Daun Jagung Untuk Klasifikasi Penyakit Tanaman,” J. Pendidik. Teknol. Inf., vol. 6, no. 1, pp. 107–116, 2023.
I. P. Putra, R. Rusbandi, and D. Alamsyah, “Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network,” J. Algoritm., vol. 2, no. 2, pp. 102–112, 2022, doi: 10.35957/algoritme.v2i2.2360.
M. S. A. M. Al-Gaashani, R. Alkanhel, M. A. S. Ali, M. S. A. Muthanna, A. Aziz, and A. Muthanna, “MSCPNet: A Multi-Scale Convolutional Pooling Network for Maize Disease Classification,” IEEE Access, vol. 13, no. December 2024, pp. 11423–11446, 2025, doi: 10.1109/ACCESS.2024.3524729.
J. Sharma et al., “Deep learning based ensemble model for accurate tomato leaf disease classification by leveraging ResNet50 and MobileNetV2 architectures,” Sci. Rep., vol. 15, no. 1, 2025, doi: 10.1038/s41598-025-98015-x.
R. K. Megalingam, G. Gopakumar Menon, S. Binoj, D. Asandi Sai, A. R. Kunnambath, and S. K. Manoharan, “Cowpea leaf disease identification using deep learning,” Smart Agric. Technol., vol. 9, no. October, p. 100662, 2024, doi: 10.1016/j.atech.2024.100662.
A. Ahmad et al., “Peanut leaf spot disease identification using pre-trained deep convolutional neural network,” J. Agric. Food Res., vol. 7, no. 1, pp. 3005–3012, 2022, doi: 10.1016/j.jafr.2023.100764.
R. Kusumastuti, T. Dwi Putra, and Z. Zulfahmi Yudam, “Klasifikasi Citra Penyakit Daun Jagung Menggunakan Algoritma Cnn Effcientnet,” Multitek Indones., vol. 17, no. 2, pp. 143–153, 2024, doi: 10.24269/mtkind.v17i2.10085.
H. Yusuf, H. Fitriyah, and S. R. Akbar, “Deteksi Penyakit pada Daun Jagung berdasarkan Hue menggunakan Metode K-Nearest Neighbor berbasis Raspberry Pi,” vol. 6, no. 12, pp. 5608–5614, 2022.
E. E. Abdallah, E. Abu, and A. E. Abdallah, “ScienceDirect A Survey of Data Mining Techniques for Digital Forensic Analysis,” Procedia Comput. Sci., vol. 257, pp. 731–736, 2025, doi: 10.1016/j.procs.2025.03.094.
J. Kpodo and A. P. Nejadhashemi, “Navigating challenges/opportunities in developing smart agricultural extension platforms: Multi-media data mining techniques,” Artif. Intell. Agric., vol. 15, no. 3, pp. 426–448, 2025, doi: 10.1016/J.AIIA.2025.04.001.
Y. Mardi, “Data Mining?: Klasifikasi Menggunakan Algoritma C4.5,” Edik Inform., vol. 2, no. 2, pp. 213–219, 2017, doi: 10.22202/ei.2016.v2i2.1465.
D. A. N. Gookyi et al., “TinyML for smart agriculture: Comparative analysis of TinyML platforms and practical deployment for maize leaf disease identification,” Smart Agric. Technol., vol. 8, no. June, p. 100490, 2024, doi: 10.1016/j.atech.2024.100490.
J. Andrew, J. Eunice, D. E. Popescu, M. K. Chowdary, and J. Hemanth, “Deep Learning-Based Leaf Disease Detection in Crops Using Images for Agricultural Applications,” Agronomy, vol. 12, no. 10, pp. 1–19, 2022, doi: 10.3390/agronomy12102395.
M. Rijal, A. M. Yani, and A. Rahman, “Deteksi Citra Daun untuk Klasifikasi Penyakit Padi menggunakan Pendekatan Deep Learning dengan Model CNN,” J. Teknol. Terpadu, vol. 10, no. 1, pp. 56–62, 2024, doi: 10.54914/jtt.v10i1.1224.
P. Sajitha, A. Diana Andrushia, N. Anand, M. Z. Naser, and E. Lubloy, “A deep learning approach to detect diseases in pomegranate fruits via hybrid optimal attention capsule network,” Ecol. Inform., vol. 84, no. November, p. 102859, 2024, doi: 10.1016/j.ecoinf.2024.102859.
M. S. Iqbal, M. Adnan, S. E. G. Mohamed, and M. Tariq, “A hybrid deep learning framework for short-term load forecasting with improved data cleansing and preprocessing techniques,” Results Eng., vol. 24, no. November, p. 103560, 2024, doi: 10.1016/j.rineng.2024.103560.
Y. Fu, L. Guo, and F. Huang, “A lightweight CNN model for pepper leaf disease recognition in a human palm background,” Heliyon, vol. 10, no. 12, p. e33447, 2024, doi: 10.1016/j.heliyon.2024.e33447.
L. Falaschetti, L. Manoni, D. Di Leo, D. Pau, V. Tomaselli, and C. Turchetti, “A CNN-based image detector for plant leaf diseases classification,” HardwareX, vol. 12, p. e00363, 2022, doi: 10.1016/j.ohx.2022.e00363.
A. Maysela and N. Rohma, “Diagnosa Penyakit Tanaman Tomat pada Citra Daun Menggunakan Metode Convolutional Neural Network (CNN),” JIMU J. Ilm. Multi Disiplin, vol. 02, no. 03, pp. 555–567, 2024, [Online]. Available: https://ojs.smkmerahputih.com/index.php/jimu/article/view/407
V. Singh, A. Chug, and A. P. Singh, “Classification of Beans Leaf Diseases using Fine Tuned CNN Model,” Procedia Comput. Sci., vol. 218, no. 2022, pp. 348–356, 2022, doi: 10.1016/j.procs.2023.01.017.
F. Sulistiyana and S. Anardani, “Aplikasi Deteksi Penyakit Tanaman Jagung Dengan Convolutional Neural Network dan Support Vector Machine,” Semin. Nas. Teknol. Inf. dan Komun., vol. 6, no. 1, pp. 423–432, 2023.
A. Tan, G. Zhou, and M. He, “Rapid Fine-Grained Classification of Butterflies Based on FCM-KM and Mask R-CNN Fusion,” IEEE Access, vol. 8, pp. 124722–124733, 2020, doi: 10.1109/ACCESS.2020.3007745.
C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 1, 2019, doi: 10.1186/s40537-019-0197-0.
V. Balafas, E. Karantoumanis, M. Louta, and N. Ploskas, “Machine Learning and Deep Learning for Plant Disease Classification and Detection,” IEEE Access, vol. 11, no. September, pp. 114352–114377, 2023, doi: 10.1109/ACCESS.2023.3324722.
S. Barburiceanu, S. Meza, B. Orza, R. Malutan, and R. Terebes, “Convolutional Neural Networks for Texture Feature Extraction. Applications to Leaf Disease Classification in Precision Agriculture,” IEEE Access, vol. 9, pp. 160085–160103, 2021, doi: 10.1109/ACCESS.2021.3131002.
C. P. Lee, K. M. Lim, Y. X. Song, and A. Alqahtani, “Plant-CNN-ViT: Plant Classification with Ensemble of Convolutional Neural Networks and Vision Transformer,” Plants, vol. 12, no. 14, pp. 1–21, 2023, doi: 10.3390/plants12142642.
B. Mazumder, M. S. I. Khan, and K. M. Mohi Uddin, “Biorthogonal wavelet based entropy feature extraction for identification of maize leaf diseases,” J. Agric. Food
D. Iswantoro and D. Handayani UN, “Klasifikasi Penyakit Tanaman Jagung Menggunakan Metode Convolutional Neural Network (CNN),” J. Ilm. Univ. Batanghari Jambi, vol. 22, no. 2, p. 900, 2022, doi: 10.33087/jiubj.v22i2.2065.
J. Kusuma, Rubianto, R. Rosnelly, Hartono, and B. H. Hayadi, “Klasifikasi Penyakit Daun Pada Tanaman Jagung Menggunakan Algoritma Support Vector Machine, K-Nearest Neighbors dan Multilayer Perceptron,” J. Appl. Comput. Sci. Technol., vol. 4, no. 1, pp. 1–6, 2023, doi: 10.52158/jacost.v4i1.484.
A. N. Akmal, N. Maelasari, T. Ilmu, and P. Islam, “Pemahaman Deep Learning dalam Pendidikan?: Analisis Literatur melalui Metode Systematic Literature Review ( SLR ),” vol. 8, 2025, doi: https://doi.org/10.54371/jiip.v8i3.7442.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Irma Fitriani, Rahma Devi, Ariandra Fokker Chaya Sajjana, Muhammad Irfan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright © by Author; Published by Institut Riset dan Publikasi Indonesia (IRPI)
This Public Research Journal of Engineering, Data Technology and Computer Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









