Comparative Study of Convolutional Neural Network Architectures and Optimizers for Flower Image Classification
DOI:
https://doi.org/10.57152/predatecs.v3i2.2110Keywords:
Convolutional Neural Network, DenseNet201, Flower Classification, InceptionV3, MobileNetV2, RMSPropAbstract
This study aims to comparatively evaluate the performance of different Convolutional Neural Network (CNN) architectures and optimization algorithms for flower image classification. Three widely used CNN architectures DenseNet201, InceptionV3, and MobileNetV2 are implemented using transfer learning with pre-trained ImageNet weights and tested with two optimizers, Adam and RMSProp. The experiments are conducted on the Flowers Recognition dataset consisting of five flower classes: daisy, dandelion, rose, sunflower, and tulip. Image normalization and data augmentation are applied to improve model generalization, while performance is evaluated using accuracy, precision, recall, and F1-score. The main contribution of this study lies in a systematic comparison of CNN architectures and optimizers within a unified experimental framework, which is rarely addressed in previous studies. The results show that DenseNet201 combined with the Adam optimizer achieves the highest classification accuracy of 90%, followed by MobileNetV2 with RMSProp, while InceptionV3 yields the lowest accuracy of 85%. These results confirm that the research objective is achieved, demonstrating that both CNN architecture and optimizer selection significantly influence flower image classification performance.
References
Legito, R. Nuraini, L. Judijanto, dan A. I. Lubis, “The Application of Convolutional Neural Networks in Floristic Recognition,” Int. J. Softw. Eng. Comput. Sci., vol. 3, no. 3, hal. 520–528, 2023, doi: 10.35870/ijsecs.v3i3.1827.
W. Fu dan Z. Chen, “A globally convergent SQP-type method with least constraint violation for nonlinear semidefinite programming,” Optimization, vol. 74, no. 10, hal. 2333–2367, Jul 2025, doi: 10.1080/02331934.2024.2345397.
A. C. R. Ngo, C. Conrad, Á. G. Baraibar, A. Matura, K. H. van Pée, dan D. Tischler, “Characterization of two hydrogen peroxide resistant peroxidases from rhodococcus opacus 1cp,” Appl. Sci., vol. 11, no. 17, 2021, doi: 10.3390/app11177941.
M. M. Sedky, W. E. Abdel-Azim, A. S. Abdel-Khalik, dan A. M. Massoud, “Integrated Switched Reluctance Starter/Generator for Aerospace Applications: Particle Swarm Optimization for Constant Current and Constant Voltage Control Designs,” Appl. Sci., vol. 12, no. 15, hal. 7583, Jul 2022, doi: 10.3390/app12157583.
I. Patel dan S. Patel, “An optimized deep learning model for flower classification using NAS-FPN and faster RCNNa,” Int. J. Sci. Technol. Res., vol. 9, no. 3, hal. 5308–5319, 2020.
M. Alom, M. Y. Ali, M. T. Islam, A. H. Uddin, dan W. Rahman, “Species classification of brassica napus based on flowers, leaves, and packets using deep neural networks,” J. Agric. Food Res., vol. 14, no. November 2022, hal. 100658, 2023, doi: 10.1016/j.jafr.2023.100658.
A. Srinivasan, V. Sasirekha, S. L. Krishna, V. R. Reddy, dan T. Vengatesh, “Deep Learning for Plant Species Classification Urooj Arif , Shaik Aamena Thanveer , P . Rakshitha , N . Gowthami , Amatul Ali Sameera , Image Image Feature Classification,” vol. 14, no. 15, hal. 14–21, 2025.
L. Zhou, N. Wu, H. Chen, dan Q. Wu, “applied sciences RRT * -Fuzzy Dynamic Window Approach ( RRT * -FDWA ) for Collision-Free Path Planning,” 2023.
L. Picado-santos, “applied sciences Mechanical Performance of Cement Bound Granular Mixtures Using Recycled Aggregate and Coconut Fiber,” 2025.
H. Mo dan L. Wei, “SA-ConvNeXt?: A Hybrid Approach for Flower Image Classification Using Selective Attention Mechanism,” 2024.
Y. Lu dan K. Yi, “applied sciences Enhancing Fine-Grained Image Recognition with Multi-Channel Self-Attention Mechanisms?: A Focus on Fruit Fly Species Classification,” 2024.
D. Kobiela, J. Groth, M. Hajdasz, dan M. Erezman, “Vehicle type recognition: a case study of MobileNetV2 for an image Classification task,” Procedia Comput. Sci., vol. 246, no. C, hal. 3947–3956, 2024, doi: 10.1016/j.procs.2024.09.169.
V. S. Syamala dan G. S. Kumar, “IMAGE CLASSIFICATION OF THE FLOWER SPECIES Page No?: 1239 ISSN NO?: 0377-9254 Page No?: 1240,” vol. 13, no. 06, hal. 1239–1246, 2022.
A. N. R. Munandar dan A. F. Rozi, “Analisis Arsitektur Convolutional Neural Network Untuk Klasifikasi Citra Bunga,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 6, no. 3, hal. 522–531, 2024, doi: 10.47233/jteksis.v6i3.1413.
Y. A. Bezabh, A. M. Ayalew, B. M. Abuhayi, T. N. Demlie, E. A. Awoke, dan T. E. Mengistu, “Classification of mango disease using ensemble convolutional neural network,” Smart Agric. Technol., vol. 8, no. May, hal. 100476, 2024, doi: 10.1016/j.atech.2024.100476.
J. Sumpena, “A Comparative study of Transfer Learning CNN for Flower Type Classification,” J. Appl. Intell. Syst., vol. 8, no. 3, hal. 389–399, 2023, doi: 10.33633/jais.v8i3.9380.
J. Sebastian, J. Pablo, L. Fu, dan F. Auat, “Deep Learning based flower detection and counting in highly populated images?: A peach grove case study Deep Learning based flower detection and counting in highly populated images?: A peach grove case study,” J. Agric. Food Res., vol. 15, hal. 100930, 2024, doi: 10.1016/j.jafr.2023.100930.
X. Qu, “Flower Species Classify System Based on Deep Learning,” Adv. Transdiscipl. Eng., vol. 51, hal. 97–101, 2024, doi: 10.3233/ATDE240063.
S. Cao dan B. Song, “Visual attentional-driven deep learning method for flower recognition,” vol. 18, no. November 2020, hal. 1981–1991, 2021, doi: 10.3934/mbe.2021103.
B. E. Bic, “Flower Recognition Using Convolutional Neural Network,” 2019.
S. Desai, C. Gode, dan P. Fulzele, “Flower Image Classification Using Convolutional Neural Network,” 2022 1st Int. Conf. Electr. Electron. Inf. Commun. Technol. ICEEICT 2022, 2022, doi: 10.1109/ICEEICT53079.2022.9768635.
F. BOZKURT, “A Study on CNN Based Transfer Learning for Recognition of Flower Species,” Eur. J. Sci. Technol., no. January, 2022, doi: 10.31590/ejosat.1039632.
P. M. Shanthappa, M. Bayari, G. B. Abhilash, K. V. Gokul, dan P. J. Ashish, “Parkinson’s disease detection using inceptionV3: A Deep learning approach,” MethodsX, vol. 14, no. April, hal. 103333, 2025, doi: 10.1016/j.mex.2025.103333.
R. Elshamy, O. Abu-Elnasr, M. Elhoseny, dan S. Elmougy, “Improving the efficiency of RMSProp optimizer by utilizing Nestrove in deep learning,” Sci. Rep., vol. 13, no. 1, hal. 1–16, 2023, doi: 10.1038/s41598-023-35663-x.
J. Zhou et al., “Intelligent classification of maize straw types from UAV remote sensing images using DenseNet201 deep transfer learning algorithm,” Ecol. Indic., vol. 166, no. June, hal. 112331, 2024, doi: 10.1016/j.ecolind.2024.112331.
J. Kang, X. Zhu, L. Shen, dan M. Li, “Fault diagnosis of a wave energy converter gearbox based on an Adam optimized CNN-LSTM algorithm,” Renew. Energy, vol. 231, no. November 2023, hal. 121022, 2024, doi: 10.1016/j.renene.2024.121022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Ekatri Yulisara, Nayla Husna, David Martin, Candrawati Ariesta

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright © by Author; Published by Institut Riset dan Publikasi Indonesia (IRPI)
This Public Research Journal of Engineering, Data Technology and Computer Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









