Implementation of C4.5 and Support Vector Machine (SVM) Algorithm for Classification of Coronary Heart Disease

Authors

  • Muhammad Ridho Anugrah Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Nola Ardelia Al-Qadr Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Nanda Nazira Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Nurul Ihza Al-Azhar University

DOI:

https://doi.org/10.57152/predatecs.v1i1.805

Keywords:

C4.5, Chronic heart disease, Classification, Data mining, Support vector machine

Abstract

Coronary Heart Disease (CHD) is a chronic disease that is not contagious and can cause heart attacks. This makes CHD one of the diseases that cause the highest mortality globally. CHD can be caused by the main factor, namely an unhealthy lifestyle, so that in an effort to identify and deal with CHD, many studies have been conducted, one of which is the use of information technology. With so many CHD patient data, data mining can be used using. classification methods include C4.5 algorithm and Support Vector Machine (NBC). The C4.5 algorithm is a decision tree-like algorithm that groups attribute values into classes so that it resembles a tree, while SVM is an algorithm that separates data with a hyperplane. This study aims to classify the CHD dataset by comparing the C4.5 and SVM algorithms. So that the best accuracy value for this data is produced, namely the SVM algorithm of 64.51% and followed by the C4.5 algorithm of 64.30%.

References

E. Anderson and J. L. Durstine, “Physical activity, exercise, and chronic diseases: A brief review,” Sport. Med. Heal. Sci., vol. 1, no. 1, pp. 3–10, 2019, doi: 10.1016/j.smhs.2019.08.006.

J. Gronewold et al., “Effects of life events and social isolation on stroke and coronary heart disease,” Stroke, no. February, pp. 735–747, 2021, doi: 10.1161/STROKEAHA.120.032070.

N. P. W. P. Sari and J. Artsanthia, “Lifestyle profile of elderly living with non-communicable disease in Bangkok and Surabaya,” Int. J. Public Heal. Sci., vol. 8, no. 4, p. 432, 2019, doi: 10.11591/ijphs.v8i4.20371.

M. Z. Islam, M. M. Rahman, and M. A. H. Moly, “Knowledge about Non-Communicable Diseases among Selected Urban School Students,” J. Armed Forces Med. Coll. Bangladesh, vol. 15, no. 1, pp. 90–93, 2020, doi: 10.3329/jafmc.v15i1.48654.

D. De Bacquer et al., “Poor adherence to lifestyle recommendations in patients with coronary heart disease: Results from the EUROASPIRE surveys,” Eur. J. Prev. Cardiol., vol. 29, no. 2, pp. 383–395, 2022, doi: 10.1093/eurjpc/zwab115.

X. He, B. R. Matam, S. Bellary, G. Ghosh, and A. K. Chattopadhyay, “CHD Risk Minimization through Lifestyle Control: Machine Learning Gateway,” Sci. Rep., vol. 10, no. 1, pp. 1–10, 2020, doi: 10.1038/s41598-020-60786-w.

K. H. Miao and J. H. Miao, “Coronary heart disease diagnosis using deep neural networks,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 10, pp. 1–8, 2018, doi: 10.14569/IJACSA.2018.091001.

WHO, “Cardiovascular diseases (CVDs),” Jun. 11, 2021. https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed Dec. 11, 2022).

A. Ishaq et al., “Improving the Prediction of Heart Failure Patients’ Survival Using SMOTE and Effective Data Mining Techniques,” IEEE Access, vol. 9, pp. 39707–39716, 2021, doi: 10.1109/ACCESS.2021.3064084.

A. Lakshmanarao, Y. Swathi, and S. S. S. Puella, “Machine Learning Techniques for Heart Disease Prediction,” Int. J. Sci. Technol. Res., vol. 8, no. March, pp. 374–377, 2019, [Online]. Available: https://www.ijstr.org/final-print/nov2019/Machine-Learning-Techniques-For-Heart-Disease-Prediction.pdf

K. Sumiran, “An Overview of Data Mining Techniques and Their Application in Industrial Engineering,” Asian J. Appl. Sci. Technol., vol. 2, no. 2, pp. 947–953, 2018, [Online]. Available: http://ajast.net/data/uploads/5029.pdf

M. Thet, “Credit Card Classification using Integration of Hierarchical Agglomerative Clustering and C4. 5 Decision Tree,” no. October, 2022, [Online]. Available: https://www.researchgate.net/profile/May_Thet2/publication/321995457_Credit_Card_Classification_using_Integration_of_Hierarchical_Agglomerative_clustering_and_C45_Decsion_Tree/links/5a3c8d71a6fdcc21d8780ab0/Credit-Card-Classification-using-Integration-of-

A. Wibowo, D. Manongga, and H. D. Purnomo, “The Utilization of Naive Bayes and C.45 in Predicting The Timeliness of Students’ Graduation,” Sci. J. Informatics, vol. 7, no. 1, pp. 99–112, 2020, doi: 10.15294/sji.v7i1.24241.

G. S. Reddy and S. Chittineni, “Entropy based C4.5-SHO algorithm with information gain optimization in data mining,” PeerJ Comput. Sci., vol. 7, pp. 1–22, 2021, doi: 10.7717/PEERJ-CS.424.

M. Jain, S. Narayan, P. Balaji, K. P. Bharath, A. Bhowmick, and R. Karthik, “Speech Emotion Recognition using Support Vector Machine,” 2020.

C. Wang, Y. Zhang, J. Song, Q. Liu, and H. Dong, “A novel optimized SVM algorithm based on PSO with saturation and mixed time-delays for classification of oil pipeline leak detection,” Syst. Sci. Control Eng., vol. 7, no. 1, pp. 75–88, 2019, doi: 10.1080/21642583.2019.1573386.

W. Xie, G. Liang, and P. Yuan, “Research on the incremental learning SVM algorithm based on the improved generalized KKT condition,” J. Phys. Conf. Ser., vol. 1237, no. 2, 2019, doi: 10.1088/1742-6596/1237/2/022150.

G. S. Sajja, M. Mustafa, K. Phasinam, K. Kaliyaperumal, R. J. M. Ventayen, and T. Kassanuk, “Towards Application of Machine Learning in Classification and Prediction of Heart Disease,” Proc. 2nd Int. Conf. Electron. Sustain. Commun. Syst. ICESC 2021, no. October, pp. 1664–1669, 2021, doi: 10.1109/ICESC51422.2021.9532940.

K. Phasinam, T. Mondal, D. Novaliendry, C. H. Yang, C. Dutta, and M. Shabaz, “Analyzing the Performance of Machine Learning Techniques in Disease Prediction,” J. Food Qual., vol. 2022, 2022, doi: 10.1155/2022/7529472.

L. Yahaya, N. D. Oye, and A. Adamu, “Performance Analysis of Some Se-Lected Machine Learning Algo-Rithms on Heart Disease Predic-Tion Using the Noble Uci Datasets,” Int. J. Eng. Appl. Sci. Technol., vol. 5, no. 1, pp. 36–46, 2020, doi: 10.33564/ijeast.2020.v05i01.006.

A. Mailana, A. A. Putra, S. Hidayat, and A. Wibowo, “Comparison of C4.5 Algorithm and Support Vector Machine in Predicting the Student Graduation Timeliness,” J. Online Inform., vol. 6, no. 1, p. 11, 2021, doi: 10.15575/join.v6i1.608.

C. Bartley, “Replication Data for: South African Heart Disease - Partial Monotonicity Datasets Dataverse,” 2016. https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/76SIQD (accessed Dec. 12, 2022).

M. De Hert, J. Detraux, and D. Vancampfort, “The intriguing relationship between coronary heart disease and mental disorders,” Dialogues Clin. Neurosci., vol. 20, no. 1, pp. 31–40, 2018, doi: 10.31887/dcns.2018.20.1/mdehert.

H. Sulistiani and A. A. Aldino, “Decision Tree C4.5 Algorithm for Tuition Aid Grant Program Classification (Case Study: Department of Information System, Universitas Teknokrat Indonesia),” Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 40–50, 2020, doi: 10.21107/edutic.v7i1.8849.

S. Huang, C. A. I. Nianguang, P. Penzuti Pacheco, S. Narandes, Y. Wang, and X. U. Wayne, “Applications of support vector machine (SVM) learning in cancer genomics,” Cancer Genomics and Proteomics, vol. 15, no. 1, pp. 41–51, 2018, doi: 10.21873/cgp.20063.

Downloads

Published

2023-07-24