Application of the Supervised Learning Algorithm for Classification of Pregnancy Risk Levels

Authors

  • Zairy Cindy Dwinnie Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Luthfia Khairani Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Margareta Amalia Miranti Putri Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Jeni Adhiva Institut Pertanian Bogor (IPB)
  • Muhammad Inas Farras Tsamarah National Dong Hwa University, Hualien

DOI:

https://doi.org/10.57152/predatecs.v1i1.806

Keywords:

Classification, K-Nearest Neighbor, Naïve Bayes Classifier, Pregnancy Risk Level, Support Vector Machine

Abstract

MMR is the number of women who die due to disorders during pregnancy or their treatment (excluding accidents, suicides, or incidental cases) during pregnancy, childbirth, and during the puerperium or 42 days after giving birth. This research aims to classify pregnancy risk datasets, namely to compare the performance of the NBC, K-NN, and SVM methods on the pregnancy risk status dataset and to find out the accuracy comparison of the algorithm results above. From the results of the analysis, it was found that of the three algorithms it resulted in a classification of pregnancy risk levels with the highest value occurring at a high level. To determine the accuracy of the data, a comparison was made between the three algorithms. Based on the confusion matrix namely Accuracy, Precision, and Recall. The results of the comparison can be concluded that the KNN algorithm provides the highest accuracy of 77.55%, NBC of 69.39%, and the lowest accuracy by SVM of 67.35%. These results state that the KNN algorithm classifies pregnancy risk level data better than the other two algorithms

References

Wahyuni Windasari, “Wahyuni+Accept (2),” Journal of Data Science Theory and Application, vol. 01, no. 02, pp. 66–71, 2022.

Y. Permatasari, U. Salamah, and R. Saptono, “Klasifikasi Risiko Bahaya Kehamilan dengan Metode Fuzzy C-Means,” Jurnal Teknologi & Informasi ITSmart, vol. 2, no. 1, p. 08, Mar. 2016, doi: 10.20961/its.v2i1.610.

Q. Hasanah, A. Andrianto, and M. A. Hidayat, “Sistem Informasi Posyandu Ibu Hamil dengan Penerapan Klasifikasi Resiko Kehamilan Menggunakan Metode Naïve Bayes (Implementing Classification Risk in Posyandu System Information for Pregnant Using Naïve Bayes Method).”

I. F. Nurahmadan, A. Agusta, P. A. Winarno, B. H. Sazali, Y. Thurfah, and A. Rosaliah, Perbandingan Algoritma Machine Learning Untuk Klasifikasi Denyut Jantung Janin. 2021.

S. M. Dol, “Use of Classification Technique in Educational Data Mining,” in 2021 International Conference on Nascent Technologies in Engineering, ICNET 2021 - Proceedings, Institute of Electrical and Electronics Engineers Inc., Jan. 2021. doi: 10.1109/ICNTE51185.2021.9487739.

A. Ilham Fatimah and S. Saepudin, “PENERAPAN DATA MINING DENGAN METODE APRIORI PADA PENJUALAN SEMBAKO (STUDI KASUS: GROSIR SEMBAKO LINA),” 2022. [Online]. Available: https://rekayasa.nusaputra.ac.id/index

D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 2, p. 437, Apr. 2020, doi: 10.30865/mib.v4i2.2080.

Analisis Dan Penerapan, A. Handayanto, K. Latifa, N. D. Saputro, and R. R. Waliyansyah, “Analisis dan Penerapan Algoritma Support Vector Machine (SVM) dalam Data Mining untuk Menunjang Strategi Promosi (Analysis and Application of Algorithm Support Vector Machine (SVM) in Data Mining to Support Promotional Strategies),” 2019.

Sri Diantika, Windu Gata, Hiya Nalatissifa, and Mareanus Lase, “Komparasi Algoritma SVM Dan Naive Bayes Untuk Klasifikasi Kestabilan Jaringan Listrik,” JURNAL ILMIAH ELEKTRONIKA DAN KOMPUTER, vol. Vol.14, no. No.1, pp. 10–15, Oct. 2021.

S. Ramadani, N. Zannah, S. Ayu, N. Nurhayati, F. Azzahra, and A. P. Windarto, “Analisis Data Mining Naive Bayes Klasifikasi Pada Kelayakan Penerima PKH,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 4, no. 1, pp. 374–381, 2020, doi: 10.30865/komik.v4i1.2725.

M. Gunawan, M. Zarlis, and R. Roslina, “Analisis Komparasi Algoritma Naïve Bayes dan K-Nearest Neighbor Untuk Memprediksi Kelulusan Mahasiswa Tepat Waktu,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, p. 513, Apr. 2021, doi: 10.30865/mib.v5i2.2925.

T. Prabhakar, “Classification of Signatures of Aircraft Prototypes using Support Vector Machine,” 2015. [Online]. Available: www.ijcrt.org

R. Singla, B. Chambayil, A. Khosla, and J. Santosh, “Comparison of SVM and ANN for classification of eye events in EEG,” J Biomed Sci Eng, vol. 04, no. 01, pp. 62–69, 2011, doi: 10.4236/jbise.2011.41008.

K. Li, H. Yu, Y. Xu, and X. Luo, “Detection of Marine Oil Spills Based on HOG Feature and SVM Classifier,” Journal of Sensors, vol. 2022, 2022, doi: 10.1155/2022/3296495.

Y. Lukito and A. R. Chrismanto, “Perbandingan Metode-Metode Klasifikasi Untuk Indoor Positioning System,” 2015.

T. M. Le, T. M. Vo, T. N. Pham, and S. V. T. Dao, “A Novel Wrapper-Based Feature Selection for Early Diabetes Prediction Enhanced with a Metaheuristic,” IEEE Access, vol. 9, pp. 7869–7884, 2021, doi: 10.1109/ACCESS.2020.3047942.

S. Uddin, I. Haque, H. Lu, M. A. Moni, and E. Gide, "Comparative performance analysis of K-nearest neighbor (KNN) algorithm and its different variants for disease prediction," Scientific Reports, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-10358-x.

“A Practical Introduction to K-Nearest Neighbors Algorithm for Regression (with Python code).”

S. Keputusan Dirjen Penguatan Riset dan Pengembangan Ristek Dikti, A. Nikmatul Kasanah, U. Pujianto, T. Elektro, F. Teknik, and U. Negeri Malang, “Terakreditasi SINTA Peringkat 2 Penerapan Teknik SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Objektivitas Berita Online Menggunakan Algoritma KNN,” masa berlaku mulai, vol. 1, no. 3, pp. 196–201, 2017.

J. Homepage, B. Delvika, S. Nurhidayarnis, P. D. Rinada, N. Abror, and A. Hidayat, “MALCOM: Indonesian Journal of Machine Learning and Computer Science Comparison of Classification Between Naive Bayes and K-Nearest Neighbor on Diabetes Risk in Pregnant Women,” vol. 2, pp. 68–75, 2022.

F. Handayani, D. Feddy, and S. Pribadi, “Implementasi Algoritma Naive Bayes Classifier dalam Pengklasifikasian Teks Otomatis Pengaduan dan Pelaporan Masyarakat melalui Layanan Call Center 110.”

J. Homepage, N. Semuel, and A. A. Pekuwali, “MALCOM: Indonesian Journal of Machine Learning and Computer Science Pattern Recognition of Doctor’s Prescription Handwriting Using the Naïve Bayes Classifier Method at Puskesmas Kambaniru,” vol. 2, pp. 55–61, 2022.

S. Thaufik Rizaldi, “Perbandingan Teknik Pembagian Data untuk Klasifikasi Sarana Akses Air pada Algoritma K-Nearest Neighbor dan Naïve Bayes Classifier,” 2020. [Online]. Available: https://sarpras.dikdasmen.kemdikbud.go.id

Y. I. Kurniawan, “Perbandingan Algoritma Naive Bayes dan C.45 dalam Klasifikasi Data Mining,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 4, p. 455, Oct. 2018, doi: 10.25126/jtiik.201854803.

J. Homepage, P. Algoritma Klasifikasi untuk Analisis Sentimen, E. Ditendra, S. Romelah, M. Habil Arsyiddik Tanjung, and M. Sarah, “MALCOM: Indonesian Journal of Machine Learning and Computer Science Comparison of Classification Algorithms for Sentiment Analysis of Islam Nusantara in Indonesia,” vol. 2, pp. 71–77, 2022.

Ieee and Ieee, 2011 International Conference on ICT Convergence.

Downloads

Published

2023-07-24