Random Forest Optimization Using Particle Swarm Optimization for Diabetes Classification
DOI:
https://doi.org/10.57152/predatecs.v1i1.809Keywords:
Classification, Diabetes, International Diabetes Federation, Particle Swarm Optimization, Random ForestAbstract
Diabetes mellitus is a chronic degenerative disease caused by a lack of insulin production in the pancreas or the body's ability to use insulin less effectively. According to a report by the World Health Organization (WHO), 4% of the total deaths in the world are caused by diabetes. The International Diabetes Federation (IDF) notes that in 2013 there has been an increase in diabetes sufferers. Indonesia is the seventh place with the largest number of cases of diabetes mellitus. In this study, the method used to classify diabetes is using a random forest algorithm with Particle Swarm Optimization (PSO) optimization. This study resulted in an accuracy of the random forest classification algorithm of 78.2% and 82.1 using PSO optimization with an increase in value of 3.9%. It can be concluded that PSO optimization can provide a better increase in classification accuracy values when compared to the random forest algorithm without PSO optimization
References
H. Itoh and M. Tanaka, “‘Greedy Organs Hypothesis’ for sugar and salt in the pathophysiology of non-communicable diseases in relation to sodium-glucose co-transporters in the intestines and the kidney,” Metab. Open, vol. 13, p. 100169, 2022, doi: https://doi.org/10.1016/j.metop.2022.100169.
A. kumar Dewangan and P. Agrawal, “Classification of Diabetes Mellitus Using Machine Learning Techniques,” Int. J. Eng. Appl. Sci., vol. 2, no. 5, 2015.
A. Berbudi, N. Rahmadika, A. I. Tjahjadi, and R. Ruslami, “Type 2 diabetes and its impact on the immune system,” Curr. Diabetes Rev., vol. 16, no. 5, p. 442, 2020.
W. H. Organization, “Noncommunicable diseases country profiles 2018,” 2018.
N. H. Cho et al., “IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045,” Diabetes Res. Clin. Pract., vol. 138, pp. 271–281, 2018, doi: https://doi.org/10.1016/j.diabres.2018.02.023.
K. Ogurtsova et al., “IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021,” Diabetes Res. Clin. Pract., vol. 183, p. 109118, 2022.
R. Goyal and I. Jialal, “Diabetes mellitus type 2,” 2018.
L. C. Truong, “Reducing the Effects of Blood Sugar Infusion of Melastoma Malabathricum L. in Mus Musculus,” J. Asian Multicult. Res. Med. Heal. Sci. Study, vol. 1, no. 1, pp. 1–10, 2020.
S. A. Onikanni et al., “Mitochondrial defects in pancreatic beta-cell dysfunction and neurodegenerative diseases: Pathogenesis and therapeutic applications,” Life Sci., p. 121247, 2022.
D. Glovaci, W. Fan, and N. D. Wong, “Epidemiology of diabetes mellitus and cardiovascular disease,” Curr. Cardiol. Rep., vol. 21, pp. 1–8, 2019.
A. D. Setyawati, P. Padila, and J. Andri, “Obesity and Heredity for Diabetes Mellitus among Elderly,” JOSING J. Nurs. Heal., vol. 1, no. 1, pp. 26–31, 2020.
D. T. Larose and C. D. Larose, Discovering knowledge in data: an introduction to data mining, vol. 4. John Wiley & Sons, 2014.
R. A. Welikala et al., “Automated detection and classification of oral lesions using deep learning for early detection of oral cancer,” IEEE Access, vol. 8, pp. 132677–132693, 2020.
N. Maulidah, A. Abdilah, E. Nurlelah, W. Gata, and F. N. Hasan, “Seleksi Fitur Klasifikasi Penyakit Diabetes Menggunakan Particle Swarm Optimization (PSO) Pada Algoritma Naive Bayes,” J. Ilm. Elektron. dan Komput., vol. 13, no. 2, pp. 40–48, 2020, [Online]. Available: http://journal.stekom.ac.id/index.php/elkom?page40
F. Dany Prasetya, H. W. Nugroho, and J. Triloka, “Analisa Data Mining Untuk Prediksi Penyakit Hepatitis C Menggunakan Algoritma Decision Tree C.45 Dengan Particle Swarm Optimization,” Pros. Semin. Nas. Darmajaya, no. April 1989, pp. 198–209, 2022, [Online]. Available: http://archive.ic
S. Benbelkacem, “Random Forests for Diabetes Diagnosis,” 2019 Int. Conf. Comput. Inf. Sci., pp. 1–4, 2019.
A. Mujumdar and V. Vaidehi, “ScienceDirect ScienceDirect ScienceDirect ScienceDirect Diabetes Prediction using Machine Learning Aishwarya Mujumdar Diabetes Prediction using Machine Learning Aishwarya Mujumdar Aishwarya,” Procedia Comput. Sci., vol. 165, pp. 292–299, 2019, doi: 10.1016/j.procs.2020.01.047.
J. B. Raja and S. C. Pandian, “Computer Methods and Programs in Biomedicine PSO-FCM based data mining model to predict diabetic disease,” vol. 196, 2020, doi: 10.1016/j.cmpb.2020.105659.
T. Islam, M. Raihan, F. Farzana, N. Aktar, P. Ghosh, and S. Kabiraj, “Typical and Non-Typical Diabetes Disease Prediction using Random Forest Algorithm,” pp. 1–6, 2020.
J. J. Khanam and S. Y. Foo, “A comparison of machine learning algorithms for diabetes prediction,” ICT Express, no. xxxx, 2021, doi: 10.1016/j.icte.2021.02.004.
C. L. Chowdhary, S. Bhattacharya, S. Hakak, and R. Kaluri, “An Ensemble based Machine Learning model for Diabetic Retinopathy Classification,” pp. 1–6, 2020, doi: 10.1109/ic-ETITE47903.2020.235.
L. J. M. Ebrahem, A. A. Sani, and S. Usman, “Predictive Supervised Machine Learning Models for Diabetes Mellitus,” SN Comput. Sci., pp. 1–10, 2020, doi: 10.1007/s42979-020-00250-8.
D. Kumar, C. Prabhat, K. Sudhakar, and T. Santosh, “Performance evaluation of classification methods with PCA and PSO for diabetes,” Netw. Model. Anal. Heal. Informatics Bioinforma., vol. 8, 2020, doi: 10.1007/s13721-019-0210-8.
S. S. Alaoui and B. Aksasse, Data Mining and Machine Learning Approaches and Technologies for Diagnosing Diabetes in Women, vol. 1. Springer International Publishing. doi: 10.1007/978-3-030-23672-4.
Q. A’yuniyah et al., “Implementasi Algoritma Naïve Bayes Classifier (NBC) untuk Klasifikasi Penyakit Ginjal Kronik,” J. Sist. Komput. dan Inform., vol. 4, no. 1, p. 72, 2022, doi: 10.30865/json.v4i1.4781.