Performance Comparison Between Artificial Neural Network, Recurrent Neural Network and Long Short-Term Memory for Prediction of Extreme Climate Change

Authors

  • Nanda Try Luchia Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Ena Tasia Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Indah Ramadhani Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Akhas Rahmadeyan Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Raudiatul Zahra Erciyes University

DOI:

https://doi.org/10.57152/predatecs.v1i2.864

Keywords:

Artificial Neural Network, Climate, Long Short Term Memory, Predictions, Recurrent Neural Network

Abstract

Extreme climate change is the most common problem in Indonesia. Extreme climate change for months can cause various natural disasters. Therefore, it is necessary to make predictions about climate change that will occur in order to avoid the risk of future conflicts. This study uses the Artificial Neural Network (ANN), Recurrent Neural Network (RNN) and Long Short Term Memory (LSTM) algorithms by comparing the performance of the three using Mean Squared Error (MSE), Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) evaluations. The results of this study indicate that RNN is better at predicting temperature in Indonesia compared to ANN and LSTM. This is evidenced by the MAPE value generated by the RNN which is smaller than the ANN and LSTM, which is 1.852 %, the RMSE value is 1,870, and the MSE value is 3,497.

References

P. Cianconi, S. Betrò, and L. Janiri, “The impact of climate change on mental health: a systematic descriptive review,” Front. psychiatry, vol. 11, p. 74, 2020.

R. Cavicchioli et al., “Scientists warning to humanity: microorganisms and climate change,” Nat. Rev. Microbiol., vol. 17, no. 9, pp. 569–586, 2019.

W. Cai et al., “Climate impacts of the El Niño--southern oscillation on South America,” Nat. Rev. Earth & Environ., vol. 1, no. 4, pp. 215–231, 2020.

M. Goss et al., “Climate change is increasing the likelihood of extreme autumn wildfire conditions across California,” Environ. Res. Lett., vol. 15, no. 9, p. 94016, 2020.

K. J. Mach et al., “Climate as a risk factor for armed conflict,” Nature, vol. 571, no. 7764, pp. 193–197, 2019.

S. Arora et al., “Air Quality Prediction Using the Fractional Gradient-Based Recurrent Neural Network,” Comput. Intell. Neurosci., vol. 2022, no. 2, pp. 1–14, 2022, doi: 10.1155/2022/9755422.

S. Lee, I. Lee, U. Yeo, J. Kim, and R. Kim, “Machine Learning Approach to Predict Air Temperature and Relative Humidity inside Mechanically and Naturally Ventilated Duck Houses?: Application of Recurrent Neural Network,” pp. 1–19, 2022.

R. J. Kuo, B. Prasetyo, and B. S. Wibowo, “Deep Learning-Based Approach for Air Quality Forecasting by Using Recurrent Neural Network with Gaussian Process in Taiwan,” 2019 IEEE 6th Int. Conf. Ind. Eng. Appl. ICIEA 2019, pp. 471–474, 2019, doi: 10.1109/IEA.2019.8715113.

C. Guo, G. Liu, and C. H. Chen, “Air Pollution Concentration Forecast Method Based on the Deep Ensemble Neural Network,” Wirel. Commun. Mob. Comput., vol. 2020, 2020, doi: 10.1155/2020/8854649.

D. K. Roy, “Jaringan Memori Jangka Pendek Panjang untuk Diprediksi,” pp. 911–941, 2021.

M. M. Patil, P. M. Rekha, A. Solanki, A. Nayyar, and B. Qureshi, “Big data analytics using swarm-based long short-term memory for temperature forecasting,” Comput. Mater. Contin., vol. 71, no. 2, pp. 2347–2361, 2022, doi: 10.32604/cmc.2022.021447.

A. Sekertekin, M. Bilgili, N. Arslan, A. Yildirim, K. Celebi, and A. Ozbek, “Short-term air temperature prediction by adaptive neuro-fuzzy inference system (ANFIS) and long short-term memory (LSTM) network,” Meteorol. Atmos. Phys., vol. 133, no. 3, pp. 943–959, 2021, doi: 10.1007/s00703-021-00791-4.

C. E. Buckland, R. M. Bailey, and D. S. G. Thomas, “Using artificial neural networks to predict future dryland responses to human and climate disturbances,” Sci. Rep., vol. 9, no. 1, p. 3855, 2019.

V. Amaratunga, L. Wickramasinghe, A. Perera, J. Jayasinghe, and U. Rathnayake, “Artificial neural network to estimate the paddy yield prediction using climatic data,” Math. Probl. Eng., vol. 2020, pp. 1–11, 2020.

S. S. Rani, J. Janet, K. C. Ramya, and V. Gomathy, “IoT based climate prediction using ANN for green networking,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 993, no. 1, p. 12090.

S. M. Robial, “Perbandingan Model Statistik pada Analisis Metode Peramalan Time Series (Studi Kasus: PT. Telekomunikasi Indonesia, Tbk Kandatel Sukabumi),” J. Ilm. SANTIKA, vol. 8, no. 2, pp. 1–17, 2018.

S. D. Kumar, K. Purushothaman, D. Chandramohan, M. M. Dushyantraj, and T. Sathish, “ANN-AGCS for the prediction of temperature distribution and required energy in hot forging process using finite element analysis,” Mater. Today Proc., vol. 21, pp. 263–267, 2020.

E. Santoso, R. N. Hakim, and F. A. Bimantoro, “KAJIAN PREDIKSI FRAGMENTASI BATUAN HASIL KEGIATAN,” pp. 145–153.

N. T. Luchia, H. Handayani, F. S. Hamdi, D. Erlangga, and S. Fitri Octavia, “Perbandingan K-Means dan K-Medoids Pada Pengelompokan Data Miskin di Indonesia,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 2, pp. 35–41, 2022.

H. K. Hoomod and Z. S. Amory, “Temperature Prediction Using Recurrent Neural Network for Internet of Things Room Controlling Application,” in 2020 5th International Conference on Communication and Electronics Systems (ICCES), 2020, pp. 973–978.

L. Wang et al., “Surface water temperature prediction in large-deep reservoirs using a long short-term memory model,” Ecol. Indic., vol. 134, p. 108491, 2022.

J. Liu, T. Zhang, G. Han, and Y. Gou, “TD-LSTM: Temporal dependence-based LSTM networks for marine temperature prediction,” Sensors, vol. 18, no. 11, p. 3797, 2018.

M. Rizki, S. Basuki, and Y. Azhar, “Implementasi Deep Learning Menggunakan Arsitektur Long Short Term Memory (LSTM) Untuk Prediksi Curah Hujan Kota Malang,” J. Repos., vol. 2, no. 3, pp. 331–338, 2020.

D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, p. e623, 2021.

T. Lattifiaa, P. W. Buanaa, and N. K. D. Rusjayanthib, “Model Prediksi Cuaca Menggunakan Metode LSTM,” JITTER J. Ilm. Teknol. dan Komput., vol. 3, pp. 994–1000, 2022.

Downloads

Published

2024-02-01