Text Classification of Translated Qur'anic Verses Using Supervised Learning Algorithm
DOI:
https://doi.org/10.57152/predatecs.v1i2.870Keywords:
Al-Quran, Classification, Fuzzy C-Means, Random Forest, Support Vector Machine (SVM)Abstract
The Quran, comprising Allah's absolute divine messages, serves as guidance. Although reading the Quran with tafsir proves beneficial, it may not offer a comprehensive understanding of the entire message conveyed by the Al-Quran. This is due to the Quran addressing diverse topics within each surah, necessitating readers to reference interconnected verses throughout the entire chapter for a holistic interpretation. However, given the extensive and varied verses, obtaining accurate translations for each verse can be a complex and time-consuming endeavor. Therefore, it becomes imperative to categorize the translated text of Quranic verses into distinct classes based on their primary content, utilizing Fuzzy C-Means, Random Forest, and Support Vector Machine. The analysis, considering the obtained Davies-Bouldin Index (DBI) value, reveals that cluster 9 emerges as the optimal cluster for classifying QS An-Nisa data, exhibiting the lowest DBI value of 4.30. Notably, the Random Forest algorithm demonstrates higher accuracy compared to the SVM algorithm, achieving an accuracy rate of 66.37%, while the SVM algorithm attains an accuracy of 50.56%.
References
N. S. Huda, M. S. Mubarok, and Adiwijaya, “A multi-label classification on topics of quranic verses (english translation) using backpropagation neural network with stochastic gradient descent and adam optimizer,” 2019 7th Int. Conf. Inf. Commun. Technol. ICoICT 2019, pp. 1–5, 2019, doi: 10.1109/ICoICT.2019.8835362.
R. Umar and I. Ulumuddin, “Using of Exact Queries and Expansion Queries in Searching for Indonesian Translated Al-Quran Verses,” J. Mantik, vol. 3, no. 2, pp. 10–19, 2019, [Online]. Available: http://iocscience.org/ejournal/index.php/mantik/article/view/882/595
A. Aboamro and H. Rizapoor, “Unveiling the Divine Text?: Exploring the Analytical Interpretation of the Holy Quran,” no. 3, pp. 39–48, 2023.
M. Mohammed et al., “Machine Translated by Google Surat Ilmu Informasi Model Pembelajaran Mesin untuk Identifikasi Al-Qur ’ an Reciter Memanfaatkan K-Nearest Neighbor dan Artificial Neural Jaringan Machine Translated by Google Surat Ilmu Informasi Model Pembelajaran Mesin unt,” vol. 11, 2022.
M. Sharifi, “An examination of the nature and necessity of feminist interpretation of the Holy Quran,” Kom Cas. za Relig. Nauk., vol. 9, no. 2, pp. 65–85, 2020, doi: 10.5937/kom2002065s.
A. Songgirin, “Tafs?r Al-Quran Dengan Al-Quran,” Al Burhan J. Kaji. Ilmu dan Pengemb. Budaya Al-Qur’an, vol. 21, no. 01, pp. 88–110, 2021, doi: 10.53828/alburhan.v21i01.221.
M. H. Albar, F. A. Bachtiar, and Indriati, “Pengelompokan Terjemah Al-Quran Departemen Agama Menggunakan Metode Fuzzy C-Means,” vol. 1, no. 1, pp. 1–10, 2020.
F. S. Nurfikri and Adiwijaya, “A comparison of Neural Network and SVM on the multi-label classification of Quran verses topic in English translation,” J. Phys. Conf. Ser., vol. 1192, no. 1, 2019, doi: 10.1088/1742-6596/1192/1/012030.
D. I. A. Putra and M. Yusuf, “Proposing machine learning of Tafsir al-Quran: In search of objectivity with semantic analysis and Natural Language Processing,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1098, no. 2, p. 022101, 2021, doi: 10.1088/1757-899x/1098/2/022101.
J. Laosai and K. Chamnongthai, “Acute leukemia classification by using SVM and K-Means clustering,” 2014 Int. Electr. Eng. Congr. iEECON 2014, pp. 1–4, 2014, doi: 10.1109/iEECON.2014.6925840.
M. N. A. Al-hamadani, “Classification and analysis of the MNIST dataset using PCA and SVM Classification and analysis of the MNIST dataset using PCA and SVM algorithms,” no. March, 2023, doi: 10.5937/vojtehg71-42689.
F. S. Utomo, N. Suryana, and M. S. Azmi, “Stemming impact analysis on Indonesian Quran translation and their exegesis classification for ontology instances,” IIUM Eng. J., vol. 21, no. 1, pp. 33–50, 2020, doi: 10.31436/iiumej.v21i1.1170.
M. Salah, “K-means versus fuzzy c-means as objective functions for Genetic Algorithms- based classification from aerial images and LIDAR data,” no. July, 2017.
T. Bikku, “A Boosted Random Forest Algorithm for Automated Bug Classification A Boosted Random Forest Algorithm,” no. June, 2023, doi: 10.1007/978-981-99-0838-7.
E. H. Mohamed and W. H. El-Behaidy, “An Ensemble Multi-label Themes-Based Classification for Holy Qur’an Verses Using Word2Vec Embedding,” Arab. J. Sci. Eng., vol. 46, no. 4, pp. 3519–3529, 2021, doi: 10.1007/s13369-020-05184-0.
S. Zhou, D. Li, Z. Zhang, and R. Ping, “A New Membership Scaling Fuzzy C-Means Clustering Algorithm,” IEEE Trans. Fuzzy Syst., vol. 29, no. 9, pp. 2810–2818, 2021, doi: 10.1109/TFUZZ.2020.3003441.
M. P. Utami, O. D. Nurhayati, and B. Warsito, “Hoax Information Detection System Using Apriori Algorithm and Random Forest Algorithm in Twitter,” 6th Int. Conf. Interact. Digit. Media, ICIDM 2020, no. Icidm, 2020, doi: 10.1109/ICIDM51048.2020.9339648.
D. P. Mohandoss, Y. Shi, and K. Suo, “Outlier Prediction Using Random Forest Classifier,” 2021 IEEE 11th Annu. Comput. Commun. Work. Conf. CCWC 2021, pp. 27–33, 2021, doi: 10.1109/CCWC51732.2021.9376077.
D. Valero-Carreras, J. Alcaraz, and M. Landete, “Comparing two SVM models through different metrics based on the confusion matrix,” Comput. Oper. Res., vol. 152, no. April 2022, p. 106131, 2023, doi: 10.1016/j.cor.2022.106131.
D. Keerthana, V. Venugopal, M. K. Nath, and M. Mishra, “Hybrid convolutional neural networks with SVM classifier for classification of skin cancer,” Biomed. Eng. Adv., vol. 5, no. July 2022, p. 100069, 2023, doi: 10.1016/j.bea.2022.100069.
E. Ad?güzel, N. Suba??, T. V. Mumcu, and A. Ersoy, “The effect of the marble dust to the efficiency of photovoltaic panels efficiency by SVM,” Energy Reports, vol. 9, pp. 66–76, 2023, doi: 10.1016/j.egyr.2022.10.358.