Optimalisasi Rekomendasi Rute Pada Perencanaan Perjalanan Wisata: Studi Pustaka

Optimization Route Recommendation-Based Tourist Trip Design Problem: A Literature Study

Authors

  • Ahmad Luky Ramdani Institut Teknologi Sumatera
  • Dwi Hendratmo Widyantoro Institut Teknologi Bandung
  • Rinaldi Munir Institut Teknologi Bandung

DOI:

https://doi.org/10.57152/malcom.v4i2.1213

Keywords:

Orienteering Problem, Personalisasi, Sistem Rekomendasi Rute, Tourist Trip Design Problem

Abstract

Tourist trip design problems (TTDP) merupakan permasalahan yang berkaitan dengan bidang pariwisata. TTDP berkaitan dengan perencanaan pengguna dalam melakukan perjalanan wisata berdasarkan pada tempat wisata yang menarik. Dalam sistem rekomendasi, TTDP merupakan permasalahan yang menarik. Hal ini karena tidak hanya digunakan untuk menemukan tempat wisata yang sesuai dengan pengguna, tetapi juga untuk menggabungkan tempat wisata ke dalam rute perjalanan yang praktis dengan mempertimbangkan batasan. Pada artikel ini bertujuan menyajikan penelitian sebelumnya yang berkaitan dengan proses optimasi rekomendasi perjalanan dan bagaimana permasalahan tersebut dimodelkan menggunakan pendekatan yang berbeda untuk mencari solusi yang optimal. Selain itu peluang penelitian yang dapat dilakukan untuk meningkatkan performa rekomendasi. Berdasarkan synthetic literatur review (SLR) dalam penelitian ini, didapatkan peluang penelitian yang dapat dilakukan untuk mendapatkan rekomendasi rute perjalanan yang optimal seperti kombinasi algoritma metaheuristic atau algoritma bio-inspired. Selain itu pada personalisasi pengguna terkait tempat wisata, terdapat peluang mengimplementasikan algorime deep learning seperti LTSM, Transformer, Bert sebagai nilai tempat wisata dari sisi pengguna

References

N. Van Truong dan T. Shimizu, “The effect of transportation on tourism promotion: Literature review on application of the Computable General Equilibrium (CGE) Model,” Transp. Res. Procedia, vol. 25, hlm. 3096–3115, 2017, doi: https://doi.org/10.1016/j.trpro.2017.05.336.

X. Mao, J. Meng, dan Q. Wang, “Modeling the effects of tourism and land regulation on land-use change in tourist regions: A case study of the Lijiang River Basin in Guilin, China,” Land Use Policy, vol. 41, hlm. 368–377, 2014, doi: https://doi.org/10.1016/j.landusepol.2014.06.018.

D.-T. Le-Klähn dan C. M. Hall, “Tourist use of public transport at destinations – a review,” Curr. Issues Tour., vol. 18, no. 8, hlm. 785–803, 2015, doi: 10.1080/13683500.2014.948812.

D.-Y. Yeh dan C.-H. Cheng, “Recommendation system for popular tourist attractions in Taiwan using Delphi panel and repertory grid techniques,” Tour. Manag., vol. 46, hlm. 164–176, 2015, doi: https://doi.org/10.1016/j.tourman.2014.07.002.

D. Gavalas, C. Konstantopoulos, K. Mastakas, dan G. Pantziou, “A survey on algorithmic approaches for solving tourist trip design problems,” J. Heuristics, vol. 20, no. 3, hlm. 291–328, 2014, doi: 10.1007/s10732-014-9242-5.

D. Gavalas, C. Konstantopoulos, K. Mastakas, dan G. Pantziou, “A survey on algorithmic approaches for solving tourist trip design problems,” J. Heuristics, vol. 20, no. 3, hlm. 291–328, 2014, doi: 10.1007/s10732-014-9242-5.

W. Zheng dan Z. Liao, “Using a heuristic approach to design personalized tour routes for heterogeneous tourist groups,” Tour. Manag., vol. 72, no. 555, hlm. 313–325, 2019, doi: 10.1016/j.tourman.2018.12.013.

K. Taylor, K. H. Lim, dan J. Chan, “Travel Itinerary Recommendations with Must-see Points-of-Interest,” Web Conf. 2018 - Companion World Wide Web Conf. WWW 2018, hlm. 1198–1205, 2018, doi: 10.1145/3184558.3191558.

P. Vansteenwegen dan D. Van Oudheusden, “The Mobile Tourist Guide: An OR Opportunity,” Insight, vol. 20, no. 3, hlm. 21–27, 2007, doi: 10.1057/ori.2007.17.

A. Gunawan, H. C. Lau, dan P. Vansteenwegen, “Orienteering Problem: A survey of recent variants, solution approaches and applications,” Eur. J. Oper. Res., vol. 255, no. 2, hlm. 315–332, 2016, doi: 10.1016/j.ejor.2016.04.059.

V. F. Yu, P. Jewpanya, S. W. Lin, dan A. A. N. P. Redi, “Team orienteering problem with time windows and time-dependent scores,” Comput. Ind. Eng., vol. 127, no. December 2017, hlm. 213–224, 2019, doi: 10.1016/j.cie.2018.11.044.

Y. Xiao dan M. Watson, “Guidance on Conducting a Systematic Literature Review,” J. Plan. Educ. Res., vol. 39, no. 1, hlm. 93–112, Mar 2019, doi: 10.1177/0739456X17723971.

A. O’Mara-Eves, J. Thomas, J. McNaught, M. Miwa, dan S. Ananiadou, “Erratum to: Using text mining for study identification in systematic reviews: a systematic review of current approaches,” Syst. Rev., vol. 4, no. 1, hlm. 59, Des 2015, doi: 10.1186/s13643-015-0031-5.

S. N. van Schaik, J. Masthoff, dan A. T. Wibowo, “Package recommender systems: A systematic review,” Intell. Decis. Technol., vol. 13, no. 4, hlm. 435–452, Feb 2020, doi: 10.3233/IDT-190140.

J. L. Sarkar dan A. Majumder, “gTour: Multiple itinerary recommendation engine for group of tourists,” Expert Syst. Appl., hlm. 116190, 2021, doi: 10.1016/j.eswa.2021.116190.

J. L. Sarkar, A. Majumder, C. R. Panigrahi, dan S. Roy, “MULTITOUR: A multiple itinerary tourists recommendation engine,” Electron. Commer. Res. Appl., vol. 40, no. August 2019, hlm. 100943, 2020, doi: 10.1016/j.elerap.2020.100943.

K. H. Lim, J. Chan, S. Karunasekera, dan C. Leckie, “Personalized itinerary recommendation with queuing time awareness,” SIGIR 2017 - Proc. 40th Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., hlm. 325–334, 2017, doi: 10.1145/3077136.3080778.

L. Chen, L. Zhang, S. Cao, Z. Wu, dan J. Cao, “Personalized itinerary recommendation: Deep and collaborative learning with textual information,” Expert Syst. Appl., vol. 144, 2020, doi: 10.1016/j.eswa.2019.113070.

K. H. Lim, J. Chan, C. Leckie, dan S. Karunasekera, “Personalized trip recommendation for tourists based on user interests, points of interest visit durations and visit recency,” Knowl. Inf. Syst., vol. 54, no. 2, hlm. 375–406, 2018, doi: 10.1007/s10115-017-1056-y.

K. H. Lim dkk., “PersTour: A personalized tour recommendation and planning system,” dalam CEUR Workshop Proceedings, 2016.

T. Tsiligirides, “Heuristic Methods Applied to Orienteering,” J. Oper. Res. Soc., vol. 35, no. 9, hlm. 797–809, Sep 1984, doi: 10.1057/jors.1984.162.

P. Vansteenwegen, W. Souffriau, dan D. Van Oudheusden, “The orienteering problem: A survey,” Eur. J. Oper. Res., vol. 209, no. 1, hlm. 1–10, 2011, doi: 10.1016/j.ejor.2010.03.045.

J. Ruiz-Meza dan J. R. Montoya-Torres, “Tourist trip design with heterogeneous preferences, transport mode selection and environmental considerations,” Ann. Oper. Res., vol. 305, no. 1–2, hlm. 227–249, 2021, doi: 10.1007/s10479-021-04209-7.

W. Wörndl, A. Hefele, dan D. Herzog, “Recommending a sequence of interesting places for tourist trips,” Inf. Technol. Tour., vol. 17, no. 1, hlm. 31–54, 2017, doi: 10.1007/s40558-017-0076-5.

C. Almira dan N. U. Maulidevi, “Travel Itinerary Recommendation for Real World Point of Interests Using Iterated Local Search,” Proc. - 2019 Int. Conf. Adv. Inform. Concepts Theory Appl. ICAICTA 2019, 2019, doi: 10.1109/ICAICTA.2019.8904339.

S. Chen, B. H. Chen, Z. Chen, dan Y. Wu, “Itinerary planning via deep reinforcement learning,” ICMR 2020 - Proc. 2020 Int. Conf. Multimed. Retr., hlm. 286–290, 2020, doi: 10.1145/3372278.3390727.

E. Erbil dan W. Wörndl, “Generating multi-day round trip itineraries for tourists,” CEUR Workshop Proc., vol. 2855, hlm. 1–7, 2021.

D. Duque, L. Lozano, dan A. L. Medaglia, “Solving the Orienteering Problem with Time Windows via the Pulse Framework,” Comput. Oper. Res., vol. 54, hlm. 168–176, 2015, doi: https://doi.org/10.1016/j.cor.2014.08.019.

F. V Fomin dan A. Lingas, “Approximation algorithms for time-dependent orienteering,” Inf. Process. Lett., vol. 83, no. 2, hlm. 57–62, 2002, doi: https://doi.org/10.1016/S0020-0190(01)00313-1.

B. Aghezzaf dan H. EL Fahim, “The multi-constraint team orienteering problem with time windows in the context of distribution problems: A variable neighborhood search algorithm,” dalam 2014 International Conference on Logistics Operations Management, IEEE, Jun 2014, hlm. 155–160. doi: 10.1109/GOL.2014.6887433.

P. Bolzoni, S. Helmer, K. Wellenzohn, J. Gamper, dan P. Andritsos, “Efficient itinerary planning with category constraints,” dalam Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, dalam SIGSPATIAL ’14. New York, NY, USA: ACM, Nov 2014, hlm. 203–212. doi: 10.1145/2666310.2666411.

W. Souffriau, P. Vansteenwegen, G. Vanden Berghe, dan D. Van Oudheusden, “The planning of cycle trips in the province of East Flanders,” Omega, vol. 39, no. 2, hlm. 209–213, 2011, doi: https://doi.org/10.1016/j.omega.2010.05.001.

Marius M. Solomon, “Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints,” Oper Res, vol. 35, hlm. 254–265, 1987.

B. Thomee dkk., “YFCC100M: The new data in multimedia research,” Commun. ACM, vol. 59, no. 2, hlm. 64–73, 2016, doi: 10.1145/2812802.

P. Padia, K. H. Lim, J. Cha, dan A. Harwood, “Sentiment-Aware and Personalized Tour Recommendation,” Proc. - 2019 IEEE Int. Conf. Big Data Big Data 2019, hlm. 900–909, 2019, doi: 10.1109/BigData47090.2019.9006442.

J. Chen dan W. Jiang, “Context-Aware Personalized POI Sequence Recommendation,” dalam International Conference on Smart City and Informatization, Springer, 2019, hlm. 197–210. doi: 10.1007/978-981-15-1301-5_16.

S. Md. M. Rashid, M. E. Ali, dan M. A. Cheema, “DeepAltTrip: Top-k Alternative Itineraries for Trip Recommendation,” no. September, hlm. 1–12, Sep 2021, doi: 10.48550/arXiv.2109.03535.

Z. Ma, H. Guo, Y. Gui, dan Y. J. Gong, “An efficient computational approach for automatic itinerary planning on web servers,” GECCO 2021 - Proc. 2021 Genet. Evol. Comput. Conf., hlm. 991–999, 2021, doi: 10.1145/3449639.3459301.

T. Tlili dan S. Krichen, “A simulated annealing-based recommender system for solving the tourist trip design problem,” Expert Syst. Appl., vol. 186, no. October 2020, hlm. 115723, 2021, doi: 10.1016/j.eswa.2021.115723.

J. Liu, K. L. Wood, dan K. H. Lim, “Strategic and Crowd-Aware Itinerary Recommendation,” dalam Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track. ECML PKDD 2020. Lecture Notes in Computer Science, vol 12460. Springer, vol. 12460 LNAI, Y. Dong, D. Mladeni?, dan C. Saunders, Ed., Cham: Springer International Publishing, 2021, hlm. 69–85. doi: 10.1007/978-3-030-67667-4_5.

N. N. Qomariyah dan D. Kazakov, “A genetic-based pairwise trip planner recommender system,” J. Big Data, vol. 8, no. 1, 2021, doi: 10.1186/s40537-021-00470-6.

A. Expósito, S. Mancini, J. Brito, dan J. A. Moreno, “A fuzzy GRASP for the tourist trip design with clustered POIs,” Expert Syst. Appl., vol. 127, hlm. 210–227, 2019, doi: 10.1016/j.eswa.2019.03.004.

I. Hapsari, I. Surjandari, dan K. Komarudin, “Solving multi-objective team orienteering problem with time windows using adjustment iterated local search,” J. Ind. Eng. Int., vol. 15, no. 4, hlm. 679–693, 2019, doi: 10.1007/s40092-019-0315-9.

L. Chen, J. Cao, H. Chen, W. Liang, H. Tao, dan G. Zhu, “Attentive multi-task learning for group itinerary recommendation,” Knowl. Inf. Syst., vol. 63, no. 7, hlm. 1687–1716, 2021, doi: 10.1007/s10115-021-01567-3.

X. Wang, C. Leckie, J. Chan, K. H. Lim, dan T. Vaithianathan, “Improving personalized trip recommendation by avoiding crowds,” Int. Conf. Inf. Knowl. Manag. Proc., vol. 24-28-Octo, hlm. 25–34, 2016, doi: 10.1145/2983323.2983749.

Downloads

Published

2024-02-25