Segmentasi Pelanggan dengan Algoritma Clustering Berdasarkan Atribut Recency, Frequency dan Monetary (RFM)
Customer Segmentation with Clustering Algorithm Based on Recency, Frequency, and Monetary (RFM) Attributes
Keywords:
Agglomerative, DBSCAN, K-Means, RFM, Segmentasi PelangganAbstract
Perdagagan bebas yang disepakati dengan negara maju menimbulkan perubahan karakter konsumen di Indonesia [1] ditambah efek pandemi Covid-19 semua komoditi dalam negeri hampir mengalami penuruan penjualan dan laba usaha tiap tahunnya[2]. Perusahaan harus mengubah strategi lain dalam menarik pelanggan menggunakan data karakteristik pelanggan yang berbeda-beda salah satunya data transaksi penjualan [3]. Data tersebut nantinya akan disegmentasi dengan metode clustering. Clustering adalah teknik analisis data yang bertujuan mengelompokkan objek-objek ke dalam grup atau klaster berdasarkan kesamaan karakteristik atau fiturnya. Analisis data dengan clustering diperlukan untuk mengidentifikasi pola dan mengekstrak informasi dari kumpulan data dengan variasi dan jumlah besar, seperti pada identifkasi segmentasi pelanggan. Hasil clustering ini akan memudahkan dalam merumuskan startegi pemasaran berorientasi pelanggan. Penelitian ini menggunakan model Recency, Frequency, and Monetary (RFM) sebagai atribut utama dan teknik clustering k-means, agglomerative, dan DBSCAN. Evaluasi berdasarkan silhouette score, Davis-Bouldin index, dan Calinski-Harabasz index menunjukkan hasil terbaik pada pembentukan tiga cluster dengan algoritma k-means untuk segmentasi pelanggan dalam penelitian ini dengan indeks silhouette score sebesar 0.364, davis-bouldin sebesar 0.93 dan calinski-harabasz sebesar 1303.6 ini menghasilkan 3 klaster pelanggan loyal customer, adequate customer dan churn atau lost customer.
References
R. D. Handoyo, L. Sugiharti, and M. A. E. Padilla, “TRADE CREATION AND TRADE DIVERSION EFFECTS: THE CASE OF THE ASEAN PLUS SIX FREE TRADE AREA,” Buletin Ekonomi Moneter dan Perbankan, vol. 24, no. 1, pp. 93–118, Apr. 2021, doi: 10.21098/bemp.v24i1.1163.
A. Siswati, “Dampak Pandemi Covid-19 pada Kinerja Keuangan (Studi kasus pada Perusahaan Teknologi yang Listing di BEI),” 2021. [Online]. Available: http://jurnal.unw.ac.id/index.php/jibaku/index
P. Anitha and M. M. Patil, “RFM model for customer purchase behavior using K-Means algorithm,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 5, pp. 1785–1792, May 2022, doi: 10.1016/j.jksuci.2019.12.011.
N. R. Maulina, I. Surjandari, and A. M. M. Rus, “Data Mining Approach for Customer Segmentation in B2B Settings using Centroid-Based Clustering,” in 2019 16th International Conference on Service Systems and Service Management (ICSSSM), IEEE, Jul. 2019, pp. 1–6. doi: 10.1109/ICSSSM.2019.8887739.
P. Bebas, O.?: Syawitri, P. Bawon, E. R. Palandeng, and F. Baftim, “DAMPAK PERDAGANGAN BEBAS PADA ERA GLOBALISASI DI INDONESIA DALAM UU NO. 44 TAHUN 2007 TENTANG KAWASAN.”
S. S. Prasetyo, M. Mustafid, and A. R. Hakim, “PENERAPAN FUZZY C-MEANS KLUSTER UNTUK SEGMENTASI PELANGGAN E-COMMERCE DENGAN METODE RECENCY FREQUENCY MONETARY (RFM),” Jurnal Gaussian, vol. 9, no. 4, pp. 421–433, Dec. 2020, doi: 10.14710/j.gauss.v9i4.29445.
P. Paduloh, M. Widyantoro, and J. Supratman, “Segmentasi Pelanggan Distributor Daging Sapi Menggunakan Pendekatan Recency, Frequency, Monetary (RFM) dan Fuzzy C-Means Clustering,” Jurnal Optimalisasi, vol. 8, no. 1, p. 43, Apr. 2022, doi: 10.35308/jopt.v8i1.5181.
R. Nugraha, “RANCANG BANGUN SISTEM CRM (CUSTOMER RELATIONSHIP MANAGEMENT) BERBASIS WEB DENGAN POLA MVC,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 1, pp. 70–85, Mar. 2022, doi: 10.35957/jatisi.v9i1.1388.
E. Ernawati, S. S. K. Baharin, and F. Kasmin, “A review of data mining methods in RFM-based customer segmentation,” J Phys Conf Ser, vol. 1869, no. 1, p. 012085, Apr. 2021, doi: 10.1088/1742-6596/1869/1/012085.
O. Dogan, B. Oztaysi, and A. Isik, “Fuzzy RFM Analysis in Car Rental Sector,” International Journal of Technology and Engineering Studies, vol. 7, no. 2, 2021, doi: 10.20469/ijtes.7.10002-2.
Y. Parikh and E. Abdelfattah, “Clustering Algorithms and RFM Analysis Performed on Retail Transactions,” in 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), IEEE, Oct. 2020, pp. 0506–0511. doi: 10.1109/UEMCON51285.2020.9298123.
S. Monalisa and F. Kurnia, “Analysis of DBSCAN and K-means algorithm for evaluating outlier on RFM model of customer behaviour,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 17, no. 1, p. 110, Feb. 2019, doi: 10.12928/telkomnika.v17i1.9394.
A. D. Savitri, F. A. Bachtiar, and N. Y. Setyawan, “Segmentasi Pelanggan Menggunakan Metode K-Means Clustering Berdasarkan Model RFM Pada Klinik Kecantikan (Studi Kasus?: Belle Crown Malang),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 9, pp. 2957–2966, Feb. 2018, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/2489
J. Matematika Fakultas Sains Dan, “PENERAPAN METODE AGGLOMERATIVE HIERARCHICAL CLUSTERING UNTUK KLASIFIKASI KABUPATEN/KOTA DI PROVINSI JAWA TIMUR BERDASARKAN KUALITAS PELAYANAN KELUARGA BERENCANA SKRIPSI OLEH ALFI FADLIANA NIM. 10610077,” 2015.
M. I. Chanafi, D. P. Hapsari, R. K. Hapsari, and T. Indriyani, “Implementasi Algoritma Clustering Untuk Pengelompokan Pelanggan Retail Berdasarkan Skor Recency, Frequency, Dan Monetary.”
Arief soma darmawan, D. Sugianti, and A. Syaifudin, “Segementasi Nasabah Tabungan Pada BMT XXX dengan Metode Fuzzy C Means dan Model RFM,” Smart Comp: Jurnalnya Orang Pintar Komputer, vol. 10, no. 2, pp. 74–78, Jun. 2021, doi: 10.30591/smartcomp.v10i2.2355.
S. Hidayat, R. Rismayati, M. Tajuddin, and N. L. P. Merawati, “Segmentation of university customers loyalty based on RFM analysis using fuzzy c-means clustering,” Jurnal Teknologi dan Sistem Komputer, vol. 8, no. 2, pp. 133–139, Apr. 2020, doi: 10.14710/jtsiskom.8.2.2020.133-139.
V. Hermawati and R. Sulaiman, “PENENTUAN SEGMENTASI PELANGGAN E-COMMERCE MENGGUNAKAN FUZZY C-MEANS DAN MODEL FUZZY RFM,” MATHunesa: Jurnal Ilmiah Matematika, vol. 9, no. 1, pp. 76–88, Jan. 2021, doi: 10.26740/mathunesa.v9n1.p76-88.
A. Wicaksono, F. A. Bachtiar, and N. Y. Setiawan, “Segmentasi Pelanggan Menggunakan Fuzzy C-Means Clustering berdasarkan RFM Model pada E-Commerce (Studi Kasus: E-Commerce XYZ),” 2021. [Online]. Available: http://j-ptiik.ub.ac.id
A. Dursun and M. Caber, “Using data mining techniques for profiling profitable hotel customers: An application of RFM analysis,” Tour Manag Perspect, vol. 18, pp. 153–160, Apr. 2016, doi: 10.1016/j.tmp.2016.03.001.
D. Singh and B. Singh, “Investigating the impact of data normalization on classification performance,” Appl Soft Comput, vol. 97, p. 105524, Dec. 2020, doi: 10.1016/j.asoc.2019.105524.
F. Aldi, F. Hadi, N. A. Rahmi, and S. Defit, “Standardscaler’s Potential in Enhancing Breast Cancer Accuracy Using Machine Learning,” Journal of Applied Engineering and Technological Science (JAETS), vol. 5, no. 1, pp. 401–413, Dec. 2023, doi: 10.37385/jaets.v5i1.3080.
“Segmentation Applications in Telecommunications,” in Data Mining Techniques in CRM, Wiley, 2010, pp. 291–332. doi: 10.1002/9780470685815.ch7.
V. Herlinda and D. Darwis, “ANALISIS CLUSTERING UNTUK RECREDESIALING FASILITAS KESEHATAN MENGGUNAKAN METODE FUZZY C-MEANS,” Darwis, Dartono, vol. 2, no. 2, pp. 94–99, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI
W. Widyawati, W. L. Y. Saptomo, and Y. R. W. Utami, “Penerapan Agglomerative Hierarchical Clustering Untuk Segmentasi Pelanggan,” Jurnal Ilmiah SINUS, vol. 18, no. 1, p. 75, Jan. 2020, doi: 10.30646/sinus.v18i1.448.
I. D. Id, “Modifikasi DBSCAN (Density-Based Spatial Clustering with Noise) Pada Objek 3 Dimensi,” Jurnal Komputer Terapan, vol. 3, no. 1, 2017.
A.-Y. Al-Yasir, M. Afdal, Z. Zarnelly, and A. Marsal, “Analisis Loyalitas Pelanggan Business To Business Berdasarkan Model RFM Menggunakan Algoritma Fuzzy C-Means,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, pp. 359–365, Jan. 2024, doi: 10.57152/malcom.v4i1.1163.
T. Kodinariya and P. Makwana, “Review on Determining of Cluster in K-means Clustering,” International Journal of Advance Research in Computer Science and Management Studies, vol. 1, pp. 90–95, Jan. 2013.
Y. Arie Wijaya, D. Achmad Kurniady, E. Setyanto, W. Sanur Tarihoran, D. Rusmana, and R. Rahim, “Davies Bouldin Index Algorithm for Optimizing Clustering Case Studies Mapping School Facilities,” TEM Journal, pp. 1099–1103, Aug. 2021, doi: 10.18421/TEM103-13.
S. Asteriadis, K. Karpouzis, N. Shaker, and G. N. Yannakakis, “Towards Detecting Clusters of Players using Visual and Gameplay Behavioral Cues,” Procedia Comput Sci, vol. 15, pp. 140–147, 2012, doi: 10.1016/j.procs.2012.10.065.
Tan, Pang-Ning, M. Steinbach, M. Adeyeye Oshin, V. Kumar, and Vipin, Introduction to Data Mining. 2005.
B. S. Everitt, S. Landau, M. Leese, and D. Stahl, Cluster Analysis. Wiley, 2011. doi: 10.1002/9780470977811.
W.-T. Wang, Y.-L. Wu, C.-Y. Tang, and M.-K. Hor, “Adaptive density-based spatial clustering of applications with noise (DBSCAN) according to data,” in 2015 International Conference on Machine Learning and Cybernetics (ICMLC), IEEE, Jul. 2015, pp. 445–451. doi: 10.1109/ICMLC.2015.7340962.
W. Rohalidyawati, R. Rahmawati, and M. Mustafid, “SEGMENTASI PELANGGAN E-MONEY DENGAN MENGGUNAKAN ALGORITMA DBSCAN (DENSITY BASED SPATIAL CLUSTERING APPLICATIONS WITH NOISE) DI PROVINSI DKI JAKARTA,” Jurnal Gaussian, vol. 9, no. 2, pp. 162–169, May 2020, doi: 10.14710/j.gauss.v9i2.27818.