Implementasi Algoritma Machine Learning dalam Kompresi Citra Foto Sumbu Filosofi Yogyakarta
Implementation of Machine Learning Algorithm in Axis Photo Image Compression Yogyakarta Philosophy
Keywords:
K-Means, Kompresi, Machine Learning, Sumbu Filosofi JogjaAbstract
Proses kompresi citra merupakan salah satu teknik yang esensial dalam mengelola data visual, terutama dalam konteks pelestarian dan digitalisasi warisan budaya. Penelitian ini membahas penerapan algoritma K-means dalam kompresi citra foto Sumbu Filosofi Yogyakarta, yang meliputi kawasan-kawasan bersejarah dan simbolis dari Kraton Yogyakarta hingga Panggung Krapyak. Algoritma K-means digunakan untuk mengurangi jumlah warna dalam citra, yang bertujuan untuk mengurangi ukuran file tanpa mengorbankan kualitas visual yang signifikan. Hasil penelitian menunjukkan bahwa algoritma K-means efektif dalam kompresi citra dengan menghasilkan ukuran file yang lebih kecil dan tetap mempertahankan detail penting dari objek bersejarah. Studi ini juga menyoroti keuntungan dan keterbatasan dari metode kompresi ini dalam konteks pelestarian digital dan penyebaran informasi budaya. Dengan demikian, penggunaan algoritma K-means dapat menjadi solusi yang efisien untuk manajemen data visual dalam upaya konservasi dan promosi warisan budaya Yogyakarta.
References
S. Endraswara, "Memayu Hayuning Bawana dalam Perspektif Ekoantropologi Sastra," SUSASTRA: Jurnal Ilmu Susastra dan Budaya, vol. 6, pp. 1-15, 2017.
J. Pamungkas, S. C. Rahmawati, and A. Rizka, "The Values Of Jogja Education Through Art Learning At Paud Institutions," Journal Research of Social Science, Economics & Management, vol. 3, 2023.
M. Baharuddin, "Manusia Sejati Dalam Falsafah Mbah Maridjan dan Abdul Karim Al-jilli (Studi Konsepsi Manunggaling Kawula Gusti dan Insan Kamil)," Analisis: Jurnal Studi Keislaman, vol. 13, pp. 221-242, 2017.
A. Permono, "Sangkan Paraning Dumadi Sumbu Filosofi Yogyakarta: Dalam Lensa Fenomenologi-Hermeneutika," Nun: Jurnal Studi Alquran Dan Tafsir Di Nusantara, vol. 7, pp. 163-208, 2021.
Q. Ning, Z. Ma, X. Zhao, and M. Yin, "SSKM_Succ: a novel succinylation sites prediction method incorporating K-means clustering with a new semi-supervised learning algorithm," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 19, pp. 643-652, 2020.
Y. Gu, K. Li, Z. Guo, and Y. Wang, "Semi-supervised K-means DDoS detection method using hybrid feature selection algorithm," IEEE Access, vol. 7, pp. 64351-64365, 2019.
S. R. Gaddam, V. V. Phoha, and K. S. Balagani, "K-Means+ ID3: A novel method for supervised anomaly detection by cascading K-Means clustering and ID3 decision tree learning methods," IEEE transactions on knowledge and data engineering, vol. 19, pp. 345-354, 2007.
W. Ding, Z. Yan, and P. Zhang, "Welding Trajectory Optimization Based on the K-means Algorithm in Welding Robot," in 2022 2nd International Conference on Algorithms, High Performance Computing and Artificial Intelligence (AHPCAI), 2022, pp. 109-114.
R. Kumari and S. Sriramulu, "Lossless Image Compression using K-Means Clustering in Color Pixel Domain," in 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT), 2024, pp. 1925-1933.
S. Sivaarunagirinathan, B. A. Bala, S. Fairooz, G. Sasi, H. N. Upadhyay, and V. Elamaran, "Lossy data compression using K-means clustering on retinal images using RStudio," in 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), 2021, pp. 1772-1776.
J. Paek and J. Ko, "$ K $-Means clustering-based data compression scheme for wireless imaging sensor networks," IEEE Systems Journal, vol. 11, pp. 2652-2662, 2015.
I. M. Pu, Fundamental data compression: Butterworth-Heinemann, 2005.
R. K. Paul, S. Jena, S. Chandran, A. Bandyopadhyay, and S. Swain, "Image Compression Scheme based on Optimized K-means Clustering and Higher-Level Decomposed DWT," Procedia Computer Science, vol. 235, pp. 642-655, 2024.
G. Alajangi, D. N. S. Manne, and R. K. Jatoth, "Image Clustering Acceleration: A Cuckoo Search-Enhanced K-Means Algorithm," in 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), 2024, pp. 1-6.
K. R. Žalik and M. Žalik, "Comparison of K-means, K-means++, X-means and Single Value Decomposition for Image Compression," in 2023 27th International Conference on Circuits, Systems, Communications and Computers (CSCC), 2023, pp. 295-301.
A. Thakker, N. Namboodiri, R. Mody, R. Tasgaonkar, and M. Kambli, "Lossy Image Compression-A Comparison Between Wavelet Transform, Principal Component Analysis, K-Means and Autoencoders," in 2022 5th International Conference on Advances in Science and Technology (ICAST), 2022, pp. 569-576.
Y. Zhang, "A Rate-Distortion-Classification approach for lossy image compression," Digital Signal Processing, vol. 141, p. 104163, 2023.
D. Syaputri, P. H. Noprita, and S. Romelah, "Implementasi Algoritma K-Means untuk Pengelompokan Distribusi Sosial Ekonomi Masyarakat Berdasarkan Demografi Kependudukan: Implemnetation of K-Means Algorithm for Economic Distribution Clustering Base on Demographics of Population," MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 1, pp. 1-6, 2021.
S. Setyaningtyas, B. I. Nugroho, and Z. Arif, "Tinjauan Pustaka Sistematis: Penerapan Data Mining Teknik Clustering Algoritma K-Means," Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, vol. 10, pp. 52-61, 2022.
A. Nursikuwagus and I. Alamsyah, "Klusterisasi Penyebab Kematian Di Indonesia Dengan Penerapan Algoritma K-Means," JSiI (Jurnal Sistem Informasi), vol. 11, pp. 56-63, 2024.
F. A. I. S. Aji, S. Achmadi, and F. Ariwibisono, "Penerapan Metode Clustering Pada Analisis Realisasi Pendapatan Asli Daerah Dengan Algoritma K-Means," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 5, pp. 443-451, 2021.
B. Ruhiman, A. Ramdan, and C. Juliane, "Algorithm K-Means Clustering Algorithm to Classify the Level of Legal Information Service Objectives in West Java Province: K-Means Clustering Algorithm to Classify the Level of Legal Information Service Objectives in West Java Province," Jurnal Komputer Terapan, vol. 8, pp. 178-185, 2022.
Y. R. K. Ashoka, N. A. Aminuddin, S. P. Fibriolawati, H. S. Bachri, R. S. Modjo, and F. Prihantoro, "Kesiapan Masyarakat dalam Pengelolaan Sumbu Filosofi Yogyakarta berbasis Cultural Heritage Management," JANUS, vol. 2, pp. 46-59.
A. V. D. Mentaru, M. C. Amanda, D. A. B. Prasetyo, and R. Y. P. R. Y. Purwoko, "Kajian Ethnomatematika Pada Sumbu Filosofis Daerah Istimewa Yogyakarta," Edumath, vol. 16, pp. 1-12, 2023.
A. N. Habibah, M. Ischak, and J. Iskandar, "Penerapan Karateristik Bangunan Di Kawasan Sumbu Filosofi Yogyakarta Terhadap Perancangan Desain Jogja Planning Gallery," Jurnal Penelitian Dan Karya Ilmiah Lembaga Penelitian Universitas Trisakti, pp. 191-202, 2024.
S. A. Haq, "Analisis Yang Sakral Sumbu Filosofis Yogyakarta Dalam Pemikiran Mircea Eliade," Ri'ayah: Jurnal Sosial dan Keagamaan, vol. 8, pp. 59-71, 2023.