Klasifikasi Jenis Jerawat Berdasarkan Convolutional Neural Network

Classification of Acne Type Based on Convolutional Neural Network

Authors

  • Aulia Rizqi Andini Universitas Airlangga
  • Imam Yuadi Universitas Airlangga
  • Imam Yuadi

Keywords:

Convolutional Neural Network, Deep Learning, Jerawat, Klasifikasi

Abstract

Jerawat biasanya dimulai pada masa awal pubertas dengan meningkatnya produksi minyak pada wajah. Penelitian ini merupakan implementasi dari klasifikasi dan pendeteksian jenis jerawat menggunakan Image Processing. Jerawat dapat diklasifikasikan kedalam beberapa jenis, yaitu komedo hitam, komedo putih, pustula, dan papula. Klasifikasi menggunakan Deep Learning metode CNN menggunakan pustaka Tensforflow Keras. Berdasarkan penelitian yang telah dilakukan, tujuan penelitian ini untuk mengklasifikasikan berbagai macam jenis jerawat dengan data gambar yang dimiliki setiap jenis jerawat. Hasil penelitian yang didapat dari hasil pengujian menghasilkan nilai akurasi yang tinggi 96.57% dan Loss 24.78%. Menggunakan Deep Learning terbukti bekerja cukup efisien karena telah menghasilkan nilai akurasi yang tinggi.

References

I. Hasan, H. Suprayogi, and D. Bethaningtyas, “Klasfikasi Jenis Jerawat Menggunakan Convolutional Neural Networks,” e-Proceeding of Engineering, vol. 8, no. 1, pp. 358–371, 2021.

R. Try Lestari et al., “Perilaku Mahasiswa Terkait Cara Mengatasi Jerawat,” 2021.

A. H. S. Heng and F. T. Chew, “Systematic review of the epidemiology of acne vulgaris,” Sci Rep, vol. 10, no. 1, Dec. 2020, doi: 10.1038/s41598-020-62715-3.

R. Ju, Y. Ying, Q. Zhou, and Y. Cao, “Exploring Genetic Drug Targets in Acne Vulgaris: A Comprehensive Proteome-Wide Mendelian Randomization Study,” J Cosmet Dermatol, Dec. 2024, doi: 10.1111/jocd.16567.

A. Nadhya Maimanah and F. Makhrus, “Acne Classification with Gaussian Mixture Model based on Texture Features,” 2022. [Online]. Available: www.ijacsa.thesai.org

Y. F. Achmad, A. Yulfitri, and P. Maharani, “Penerapan Algoritma GLCM dan KNN dalam Pengenalan Jenis Jerawat,” Jurnal Komtika (Komputasi dan Informatika), vol. 6, no. 2, pp. 74–82, Nov. 2022, doi: 10.31603/komtika.v6i2.8078.

Y. Fauzia Achmad, A. Yulfitri, and M. B. Ulum, “Identifikasi Jenis Jerawat Berdasarkan Tekstur Menggunakan GLCM dan Backpropagation,” Jurnal Sains Manajemen Informatika dan Komputer, vol. 20, no. 2, pp. 139–146, 2021, [Online]. Available: https://ojs.trigunadharma.ac.id/

C. D. Sinaulan and A. Hantara, “Model Klasifikasi Permasalahan Kulit Wajah Menggunakan Metode Support Vector Machine,” Jurnal Pendidikan dan Kewirausahaan, vol. 9, no. 1, pp. 297–308, Oct. 2021, doi: 10.47668/pkwu.v9i1.246.

Z. Lu et al., “Natural language processing and machine learning methods to characterize unstructured patient-reported outcomes:validation study,” J Med Internet Res, vol. 23, no. 11, Nov. 2021, doi: 10.2196/26777.

B. Mahesh, “Machine Learning Algorithms-A Review,” International Journal of Science and Research, 2018, doi: 10.21275/ART20203995.

P. Yao et al., “Single Model Deep Learning on Imbalanced Small Datasets for Skin Lesion Classification,” IEEE Trans Med Imaging, vol. 41, no. 5, pp. 1242–1254, May 2022, doi: 10.1109/TMI.2021.3136682.

A. Adegun and S. Viriri, “Deep learning techniques for skin lesion analysis and melanoma cancer detection: a survey of state-of-the-art,” Artif Intell Rev, vol. 54, no. 2, pp. 811–841, Feb. 2021, doi: 10.1007/s10462-020-09865-y.

S. Dong, P. Wang, and K. Abbas, “A survey on deep learning and its applications,” Comput Sci Rev, vol. 40, May 2021, doi: 10.1016/j.cosrev.2021.100379.

S. W. Kusuma, F. Natalia, C. S. Ko, and S. Sudirman, “DETECTION OF AI-GENERATED ANIME IMAGES USING DEEP LEARNING,” ICIC Express Letters, Part B: Applications, vol. 15, no. 3, pp. 295–301, Mar. 2024, doi: 10.24507/icicelb.15.03.295.

S. Dewi, F. Ramadhani, and S. Djasmayena, “Klasifikasi Jenis Jerawat Berdasarkan Gambar Menggunakan Algoritma CNN (Convolutional Neural Network),” Hello World Jurnal Ilmu Komputer, vol. 3, no. 2, pp. 68–73, Jul. 2024, doi: 10.56211/helloworld.v3i2.518.

M. B. Islam, M. S. Junayed, A. Sadeghzadeh, N. Anjum, A. A. Jeny, and A. F. M. S. Shah, “Acne Vulgaris Detection and Classification: A Dual Integrated Deep CNN Model,” Informatica (Slovenia), vol. 47, no. 4, pp. 577–592, Dec. 2023, doi: 10.31449/inf.v47i4.4384.

E. Joelianto et al., “Convolutional neural network-based real-time mosquito genus identification using wingbeat frequency: A binary and multiclass classification approach,” Ecol Inform, vol. 80, May 2024, doi: 10.1016/j.ecoinf.2024.102495.

M. Novita et al., “Exploring deep learning and machine learning for novel red phosphor materials,” J Lumin, vol. 269, May 2024, doi: 10.1016/j.jlumin.2024.120476.

R. L. Hasanah and M. Hasan, “Deteksi Lesi Acne Vulgaris Pada Citra Jerawat Wajah Menggunakan Metode K-Means Clustering,” Indonesian Journal on Software Engineering (IJSE), vol. 8, no. 1, pp. 46–51, 2022, [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/ijse46

M. Shorfuzzaman, “An explainable stacked ensemble of deep learning models for improved melanoma skin cancer detection,” in Multimedia Systems, Springer Science and Business Media Deutschland GmbH, Aug. 2022, pp. 1309–1323. doi: 10.1007/s00530-021-00787-5.

R. Rianto, D. Risdho Listianto, U. Teknologi Yogyakarta Jl Siliwangi Jl Ring Road Utara, and D. Istimewa Yogyakarta, “Convolutional Neural Network untuk mengklasifikasi tingkat keparahan jerawat,” AITI: Jurnal Teknologi Informasi, vol. 20, no. Agustus, pp. 167–176, 2023, [Online]. Available: www.kaggle.com

Published

2025-01-09