Analisis Kinerja Convolutional Neural Networks Baseline untuk Identifikasi Jenis Jenis Penyakit Kentang

Performance Analysis of Baseline Convolutional Neural Networks for Identifying Potato Disease Types

Authors

  • Khoir Prasetyo Universitas Teknokrat Indonesia
  • Ridwan Mahenra Universitas Teknokrat Indonesia

DOI:

https://doi.org/10.57152/malcom.v5i2.1722

Keywords:

Citra Daun Kentang, Convolutional Neural Networks, Deep Learning, Identifikasi Penyakit Tanaman

Abstract

Penelitian ini bertujuan untuk mengembangkan dan mengevaluasi model Convolutional Neural Network (CNN) baseline dalam mengidentifikasi jenis-jenis penyakit pada daun kentang. Dataset yang digunakan terdiri dari citra daun kentang yang terinfeksi dan sehat, yang diklasifikasikan ke dalam beberapa kategori penyakit seperti late blight, early blight, dan penyakit bakteri. Model CNN dirancang dengan arsitektur dasar yang meliputi beberapa lapisan konvolusi, pooling, dan fully connected, serta dilatih menggunakan Optimizer Adam dengan fungsi loss categorical cross-entropy. Hasil evaluasi menunjukkan bahwa model mencapai akurasi 82% pada validation set dan rata-rata 95% pada data acak. Meskipun model menunjukkan performa yang baik dalam mengklasifikasikan citra, indikasi overfitting terlihat dari perbedaan antara akurasi training dan validation. Analisis lebih lanjut mengidentifikasi kesalahan prediksi yang terjadi, terutama pada kelas dengan gejala visual yang mirip. Penelitian ini merekomendasikan penerapan teknik regulasi, augmentasi data, dan penggunaan arsitektur lebih kompleks untuk meningkatkan akurasi model. Hasil penelitian ini diharapkan dapat memberikan kontribusi bagi pengembangan sistem deteksi penyakit tanaman berbasis kecerdasan buatan yang lebih efisien.

Downloads

References

M. Hasrialdy Qamalpasha Muchransyah, mun Sarma, and M. Najib, “Analisis Internal dan Eksternal Kentang Indonesia dalam Menghadapi Masyarakat Ekonomi ASEAN (MEA) Indonesian Potential Internal and External Analysis in Facing the ASEAN Economic Community (MEA),” Jurnal Manajemen dan Organisasi (JMO), vol. 9, no. 2, pp. 115–121, 2018.

R. R. Kumar, A. K. Jain, V. Sharma, N. Jain, P. Das, and P. Sahni, “Advanced Deep Learning Model for Multi-Disease Prediction in Potato Crops: A Precision Agriculture Approach,” in 2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems, ICITEICS 2024, Institute of Electrical and Electronics Engineers Inc., 2024. doi: 10.1109/ICITEICS61368.2024.10625281.

Olabimpe Banke Akintuyi, “AI in agriculture: A comparative review of developments in the USA and Africa,” Open Access Research Journal of Science and Technology, vol. 10, no. 2, pp. 060–070, Apr. 2024, doi: 10.53022/oarjst.2024.10.2.0051.

S. Veldandi, . N., and K. M. Reddy, “Identification of Plant Leaf Disease Using CNN and Image Processing,” Journal of Image Processing and Intelligent Remote Sensing, no. 44, pp. 1–10, Jun. 2024, doi: 10.55529/jipirs.44.1.10.

A. Adegbola, J. Ampitan, O. M. Akande, O. B. Adewuyi, E. Mgbeahuruike, and A. Adebanjo, “A Convolutional Neural Network Model for Crop Disease Detection System,” British journal of computer, networking and information technology, vol. 7, no. 4, pp. 94–102, 2024, doi: 10.52589/bjcnit-z1blvyo8.

A. Sandhi, “A Comprehensive Hybrid Model For Apple Fruit Disease Detection Using Multi-Architecture Feature Extraction,” 2024, doi: 10.20944/preprints202410.1894.v1.

J. Sarada, J. Ramachandraiah, V. Neerugatti, C. R. Raman, A. Taranum, and A. Sinha, “Early stage disease classification in potato leaves using convolutional neural network (CNN),” pp. 707–712, 2024, doi: 10.1201/9781003559092-122.

D. Balasubramanian, K. Mruthika, G. Sushaan, Y. V, and B. K., “Enhancing Plant Disease Detection Through Transfer Learning With Ensemble Techniques: A Novel Approach For Precision Agriculture,” pp. 1–6, 2024, doi: 10.1109/nmitcon62075.2024.10698982.

G. S. Hukkeri, B. C. Soundarya, H. L. Gururaj, and V. Ravi, “Classification of Various Plant Leaf Disease Using Pretrained Convolutional Neural Network On Imagenet,” Open Agric J, vol. 18, no. 1, May 2024, doi: 10.2174/0118743315305194240408034912.

M. Talaat, X. Si, and J. Xi, “Multi-Level Training and Testing of CNN Models in Diagnosing Multi-Center COVID-19 and Pneumonia X-ray Images,” Applied Sciences (Switzerland), vol. 13, no. 18, Sep. 2023, doi: 10.3390/app131810270.

P. Kumar and D. Singh, “Pre-Processing Techniques for Enhancing CNN Performance,” in 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), ICRITO 2024, Institute of Electrical and Electronics Engineers Inc., 2024. doi: 10.1109/ICRITO61523.2024.10522352.

L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao, “Normalization Techniques in Training DNNs: Methodology, Analysis and Application,” Sep. 2020, [Online]. Available: http://arxiv.org/abs/2009.12836

S. Hadianti, F. Aziz, D. Nur Sulistyowati, D. Riana, R. Saputra, and Kurniawantoro, “Identification of Potato Plant Pests Using the Convolutional Neural Network VGG16 Method,” Journal Medical Informatics Technology, pp. 39–44, Jun. 2024, doi: 10.37034/medinftech.v2i2.37.

C. Liu and L. Hui, “ReLU soothes the NTK condition number and accelerates optimization for wide neural networks,” May 2023, [Online]. Available: http://arxiv.org/abs/2305.08813

N. I. Galanis, P. Vafiadis, K. G. Mirzaev, and G. A. Papakostas, “Convolutional Neural Networks: A Roundup and Benchmark of Their Pooling Layer Variants,” Algorithms, vol. 15, no. 11, Nov. 2022, doi: 10.3390/a15110391.

Z. Chen, Y. Du, and T. T. Toe, “Line Average Pooling: A Better Way to Handle Feature Maps on CNN for Skin Cancer Classification,” in Proceedings - 2022 Asia Conference on Algorithms, Computing and Machine Learning, CACML 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 522–526. doi: 10.1109/CACML55074.2022.00094.

E. Zhang, M. Wahib, R. Zhong, and M. Munetomo, “Learning from the Past Training Trajectories: Regularization by Validation,” Journal of Advanced Computational Intelligence and Intelligent Informatics, vol. 28, no. 1, pp. 67–78, Jan. 2024, doi: 10.20965/jaciii.2024.p0067.

S. Geng, “Analysis of the Different Statistical Metrics in Machine Learning,” 2024.

Chavda Rohit P. and Tosal Bhalodia, “Detection and Classification on Plant Disease using Deep Learning Techniques,” International Journal of Scientific Research in Computer Science, Engineering and Information Technology, vol. 10, no. 3, pp. 365–375, May 2024, doi: 10.32628/cseit2410333.

R. R. Kumar, A. K. Jain, V. Sharma, N. Jain, P. Das, and P. Sahni, “Advanced Deep Learning Model for Multi-Disease Prediction in Potato Crops: A Precision Agriculture Approach,” in 2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems, ICITEICS 2024, Institute of Electrical and Electronics Engineers Inc., 2024. doi: 10.1109/ICITEICS61368.2024.10625281.

Downloads

Published

2025-03-21

How to Cite

Prasetyo, K., & Mahenra, R. (2025). Analisis Kinerja Convolutional Neural Networks Baseline untuk Identifikasi Jenis Jenis Penyakit Kentang: Performance Analysis of Baseline Convolutional Neural Networks for Identifying Potato Disease Types. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 5(2), 609-615. https://doi.org/10.57152/malcom.v5i2.1722