Deteksi Kebakaran Menggunakan Algoritma Single Shoot MultiBox Detector dengan Rule RGB dan Rule YcbCr
Fire Detection Using Single Shoot MultiBox Detector Algorithm with RGB Rule and YCbCr Rule
DOI:
https://doi.org/10.57152/malcom.v5i1.1761Keywords:
Computer Vision, Fire Detection, RGB Rule, Single Shot Multibox Detector (SSD), YCbCr RuleAbstract
Penelitian ini mengembangkan sistem deteksi api berbasis computer vision menggunakan algoritma Single Shot Multibox Detector (SSD) untuk mengatasi keterbatasan sistem deteksi api konvensional yang umumnya kurang responsif dan kurang akurat dalam kondisi pencahayaan dan jarak yang bervariasi. Sistem ini menerapkan model SSD MobileNetV2 yang telah dilatih menggunakan dataset gambar api yang di-augmentasi, memungkinkan deteksi yang andal dalam berbagai skenario. Hasil penelitian menunjukkan bahwa penggunaan kombinasi aturan RGB dan YCbCr secara signifikan meningkatkan akurasi deteksi, khususnya dalam mengurangi tingkat false positive yang sering terjadi pada metode sebelumnya. Selain itu, sistem ini meningkatkan efisiensi waktu deteksi dengan rasio deteksi api terhadap frame yang lebih optimal, sehingga dapat memberikan respons real-time yang cepat. Dengan tingkat akurasi yang tinggi dan kemampuan deteksi real-time, sistem ini efektif untuk aplikasi praktis seperti pemantauan kebakaran di area industri dan publik, memberikan perlindungan tambahan, serta mendukung tindakan preventif yang lebih cepat dalam menghadapi potensi kebakaran.
References
E. Rahayu, Y. H. P. Isnomo, and Moh. A. Anshori, “Automatic Early Warning System Design With Firefighter Synchronization Based on Internet of Things (IoT),” Jurnal Jartel Jurnal Jaringan Telekomunikasi, vol. 13, no. 1, pp. 103–108, 2023, doi: 10.33795/jartel.v13i1.416.
S. Suhardono et al., “Human activities and forest fires in Indonesia: An analysis of the Bromo incident and implications for conservation tourism,” Trees, Forests and People, vol. 15, p. 100509, 2024, doi: https://doi.org/10.1016/j.tfp.2024.100509.
A. Bayegizova et al., “Fire detection using deep learning methods,” International Journal of Electrical and Computer Engineering, vol. 14, no. 1, pp. 547–555, Feb. 2024, doi: 10.11591/ijece.v14i1.pp547-555.
D. Tribuana, H. Hazriani, and A. Latief Arda, “Face recognition for smart door security access with convolutional neural network method,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 22, no. 3, pp. 702–710, Jun. 2024, doi: 10.12928/telkomnika.v22i3.25946.
D. Tribuana, H. Hazriani, and A. Latief Arda, “Image Preprocessing Approaches Toward Better Learning Performance with CNN,” JURNAL RESTI (Rekayasa Sist. Teknol. Inf.), vol. 10, no. 1, pp. 1–9, 2024, doi: 10.29207/resti.v8i1.5417.
S. Chitram, S. Kumar, and S. Thenmalar, “Enhancing Fire and Smoke Detection Using Deep Learning Techniques †,” Engineering Proceedings, vol. 62, no. 1, 2024, doi: 10.3390/engproc2024062007.
H. Zhan, X. Pei, T. Zhang, and L. Zhang, “Research on flame detection method based on improved SSD algorithm,” Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 6501–6512, Oct. 2023, doi: 10.3233/JIFS-232645.
F. Xu, X. Zhang, T. Deng, and W. Xu, “An Image-Based Fire Monitoring Algorithm Resistant to Fire-like Objects,” Fire, vol. 7, no. 1, Jan. 2024, doi: 10.3390/fire7010003.
Riswanto, A. Ahmad, Hazriani, and D. Tribuana, “Calorie Detection of Traditional Indonesian Food Using the Single Shot Multibox Detector (SSD) Method,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 3, pp. 819–829, 2024, doi: 10.57152/malcom.v4i3.1332.
X. Zheng, F. Chen, L. Lou, P. Cheng, and Y. Huang, “Real-Time Detection of Full-Scale Forest Fire Smoke Based on Deep Convolution Neural Network,” Remote Sens (Basel), vol. 14, no. 3, Feb. 2022, doi: 10.3390/rs14030536.
A. Q. Nguyen, H. T. Nguyen, V. C. Tran, H. X. Pham, and J. Pestana, “A Visual Real-time Fire Detection using Single Shot MultiBox Detector for UAV-based Fire Surveillance,” in 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE), 2021, pp. 338–343. doi: 10.1109/ICCE48956.2021.9352080.
F. Safarov, S. Muksimova, M. Kamoliddin, and Y. I. Cho, “Fire and Smoke Detection in Complex Environments,” Fire, vol. 7, no. 11, Nov. 2024, doi: 10.3390/fire7110389.
W. Liu et al., “SSD: Single Shot MultiBox Detector,” in Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part I, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds., in Lecture Notes in Computer Science, vol. 9905. Springer, 2016, pp. 21–37. doi: 10.1007/978-3-319-46448-0_2.
J. Pincott, P. W. Tien, S. Wei, and J. K. Calautit, “Indoor fire detection utilizing computer vision-based strategies,” Journal of Building Engineering, vol. 61, p. 105154, 2022, doi: https://doi.org/10.1016/j.jobe.2022.105154.
D. Lazzaro, F. Sthevanie, and K. N. Ramadhani, “Enhancing Fire Detection in Images using Faster R-CNN with Gaussian Filtering and Contrast Adjustment,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 3, p. 1572, Jul. 2023, doi: 10.30865/mib.v7i3.6486.
W. Liu et al., “SSD: Single Shot MultiBox Detector,” in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds., Cham: Springer International Publishing, 2016, pp. 21–37.
T. Çelik and H. Demirel, “Fire detection in video sequences using a generic color model,” Fire Saf J, vol. 44, no. 2, pp. 147–158, 2009, doi: 10.1016/j.firesaf.2008.05.005.
A. A. Munshi, “Fire Detection Methods Based on Various Color Spaces and Gaussian Mixture Models,” Advances in Science and Technology Research Journal, vol. 15, no. 3, pp. 197–214, 2021, doi: 10.12913/22998624/138924.
D. Pritam and J. H. Dewan, “Detection of fire using image processing techniques with LUV color space,” in 2017 2nd International Conference for Convergence in Technology (I2CT), 2017, pp. 1158–1162. doi: 10.1109/I2CT.2017.8226309.
Q. Lu, J. Yu, and Z. Wang, “A Color Model Based Fire Flame Detection System,” in Communications in Computer and Information Science, Singapore: Springer Nature, 2016, pp. 474–485. doi: 10.1007/978-981-10-3002-4_40.
D. Gragnaniello, A. Greco, C. Sansone, and B. Vento, “FLAME: fire detection in videos combining a deep neural network with a model-based motion analysis,” Neural Comput Appl, 2025, doi: 10.1007/s00521-024-10963-z.