Identifikasi Gerakan Shalat Menggunakan Model Klasifikasi Convolutional Neural Network dengan Pengolahan Citra Prewitt dan Morphology
Identification of Prayer Movements Using Convolutional Neural Network Classification Model and Prewitt and Morphology Image Processing
Keywords:
Feature extraction, Gerakan Takbir, Machine Learning, Morfologi, PrewittAbstract
Gerakan shalat menurut sunnah harus dilakukan dengan tepat. Gerakan shalat dapat dipelajari dengan guru agama agar gerakannya tepat, namun banyak orang yang membutuhkan waktu lebih lama atau mencari guru agama yang dapat mengajarkannya. Untuk itu, diperlukan suatu sistem pembelajaran yang dapat membantu mengenali gerakan shalat, khususnya gerakan takbir. Penelitian ini berfokus pada gerakan takbir berdasarkan kitab Fiqih Sholat Seperti Nabi karya Syeikh Albani. Penelitian ini berfokus pada peningkatan akurasi pendeteksian gerakan takbir menggunakan metode pengolahan citra berbasis Convolutional Neural Network (CNN) dengan operator Prewitt dan operasi morfologi. Pada tahap awal, operator Prewitt diterapkan untuk mendeteksi tepi gerakan pada citra grayscale, yaitu dengan menonjolkan kontur gerakan tangan saat takbir. Kemudian, dilakukan operasi morfologi seperti dilatasi dan erosi untuk menghaluskan citra dan mengurangi noise, sehingga memperjelas tepi gerakan yang terdeteksi. Citra yang dihasilkan menjadi input bagi model CNN yang dilatih menggunakan teknik transfer learning. Dengan pendekatan ini, model CNN memperoleh akurasi sebesar 89,2% dalam mendeteksi gerakan takbir. Hasil penelitian menunjukkan bahwa kombinasi operator Prewitt, operasi morfologi, dan CNN efektif meningkatkan akurasi klasifikasi gerakan sholat dan memberikan kontribusi baru pada pengenalan gerakan sholat menggunakan metode pemrosesan gambar
References
Astriani, N. Latifah, and I. Lutfi, “Monitoring Gerakan Shalat Melalui Kamera Dengan Metode Pose Predict,” J. Qua Tek., vol. 12, no. 2, pp. 28–38, 2022, doi: 10.35457/quateknika.v12i2.2324.
R. A. Ahmadi, J. Adler, and S. L. Ginting, “Teknologi Augmented Reality Sebagai Media Pembelajaran Gerakan Shalat,” Pros. Semin. Nas. Komput. dan Inform., vol. 2017, pp. 978–602, 2017.
S. M. N. Al-Albani, Sifat Shalat Nabi Shallallaahu 'Alaihi Wa sallam: Seakan-akan Anda Menyaksikannya = Shifatu Shalat an-Nabi Shallallaahu 'Alaihi Wa sallam: Min at-Takbir Ila at Taslim Ka’ annaka TarahaSifat Shalat Nabi Shallallaahu ’Alaihi Wa sallam: Seakan-akan Anda Meny, Indonesia. Jakarta: Darul Haq, 2013.
Dedi ardiansyah and Miftahul Ulum, “Mengungkap Rahasia Kedahsyatan Gerakan Shalat Bagi Kesehatan Tubuh,” Excel. J. Islam. Educ. Manag., vol. 3, no. 01, pp. 77–89, 2023, doi: 10.21154/excelencia.v3i01.1780.
I. Y. Nasution, Penerapan algoritma brute force untuk pengenalan gerakan sholat berdasarkan empat madzhab berbasis augmented reality. 2019.
J. S. Yadav and P. Shyamala Bharathi, “Edge Detection of Images using Prewitt Algorithm Comparing with Sobel Algorithm to Improve Accuracy,” in 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM), 2022, pp. 351–355. doi: 10.1109/ICIEM54221.2022.9853193.
Sunardi, A. Yudhana, and M. Fahmi, “SVM-CNN Hybrid Classification for Waste Image Using Morphology and HSV Color Model Image Processing,” Trait. du Signal, vol. 40, no. 4, pp. 1763–1769, 2023, doi: 10.18280/ts.400446.
L. Cheng, “Athletes’ Action Recognition and Posture Estimation Algorithm Based on Image Processing Technology,” J. Electr. Syst., vol. 20, no. 6s, pp. 2059–2069, 2024, doi: 10.52783/jes.3121.
S. Agustin, E. N. Putri, and I. N. Ichsan, “Design of A Cataract Detection System based on The Convolutional Neural Network,” J. ELTIKOM, vol. 8, no. 1, pp. 1–8, 2024, doi: 10.31961/eltikom.v8i1.1019.
R. M. Iqbal, “Human Movement Detection System when Coughing Using Convolutional Neural Network (CNN).” Universitas 17 Agustus 1945 Surabaya, 2022.
A. Koubaa et al., “Activity Monitoring of Islamic Prayer (Salat) Postures using Deep Learning,” Proc. - 2020 6th Conf. Data Sci. Mach. Learn. Appl. CDMA 2020, pp. 106–111, 2020, doi: 10.1109/CDMA47397.2020.00024.
M. H. El-Hoseiny and E. Shaban, “Muslim prayer actions recognition,” 2009 Int. Conf. Comput. Electr. Eng. ICCEE 2009, vol. 1, pp. 460–465, 2009, doi: 10.1109/ICCEE.2009.68.
M. Karahan, H. Kurt, and C. Kasnakoglu, “Moving Object Detection and Counting in Traffic with Gaussian Mixture Models and Vehicle License Plate Recognition with Prewitt Method,” ISMSIT 2022 - 6th Int. Symp. Multidiscip. Stud. Innov. Technol. Proc., no. October, pp. 32–36, 2022, doi: 10.1109/ISMSIT56059.2022.9932687.
S. Rahmawati, R. Devita, R. H. Zain, E. Rianti, N. Lubis, and A. Wanto, “Prewitt and Canny Methods on Inversion Image Edge Detection: An Evaluation,” J. Phys. Conf. Ser., vol. 1933, no. 1, 2021, doi: 10.1088/1742-6596/1933/1/012039.
A. Susanto, Z. H. Dewantoro, C. A. Sari, D. R. I. M. Setiadi, E. H. Rachmawanto, and I. U. W. Mulyono, “Shallot Quality Classification using HSV Color Models and Size Identification based on Naive Bayes Classifier,” J. Phys. Conf. Ser., vol. 1577, no. 1, 2020, doi: 10.1088/1742-6596/1577/1/012020.
M. Fahmi, A. Yudhana, and S. Sunardi, “Image Processing Using Morphology on Support Vector Machine Classification Model for Waste Image,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 22, no. 3, pp. 553–566, 2023, doi: 10.30812/matrik.v22i3.2819.
K. Kangune, V. Kulkarni, and P. Kosamkar, “Grapes Ripeness Estimation using Convolutional Neural network and Support Vector Machine,” 2019 Glob. Conf. Adv. Technol. GCAT 2019, no. March, 2019, doi: 10.1109/GCAT47503.2019.8978341.
A. Semma, S. Lazrak, Y. Hannad, M. Boukhani, and Y. El Kettani, “Writer Identification: The Effect Of Image Resizing On Cnn Performance,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 46, no. 4/W5-2021, pp. 501–507, 2021, doi: 10.5194/isprs-Archives-XLVI-4-W5-2021-501-2021.
Sunardi, A. Yudhana, and M. Fahmi, “Improving Waste Classification Using Convolutional Neural Networks: An Application of Machine Learning for Effective Environmental Management,” Rev. d’Intelligence Artif., vol. 37, no. 4, pp. 845–855, 2023, doi: 10.18280/ria.370404.
A. Shihab Ahmed, “Comparative Study Among Sobel, Prewitt and Canny Edge Detection Operators Used in Image Processing,” J. Theor. Appl. Inf. Technol., vol. 15, no. 19, p. 19, 2018, [Online]. Available: www.jatit.org
M. F. Qureshi, Z. Mushtaq, M. Z. u. Rehman, and E. N. Kamavuako, “Spectral Image-Based Multiday Surface Electromyography Classification of Hand Motions Using CNN for Human–Computer Interaction,” IEEE Sens. J., vol. 22, no. 21, pp. 20676–20683, 2022, doi: 10.1109/JSEN.2022.3204121.
L. Chaplot, S. Houshmand, K. B. Martinez, J. Andersen, and H. Rouhani, “Optimizing Sensor Placement and Machine Learning Techniques for Accurate Hand Gesture Classification,” Electron., vol. 13, no. 15, pp. 1–12, 2024, doi: 10.3390/electronics13153072.
M. Fahmi and A. Yudhana, “Pemilahan Sampah Menggunakan Model Klasifikasi Support Vector Machine Gabungan dengan Convolutional Neural Network,” J. Ris. Komputer), vol. 10, no. 1, pp. 2407–389, 2023, doi: 10.30865/jurikom.v10i1.5468.