Optimasi Extreme Gradient Boosting dengan Particle Swarm Optimization untuk Estimasi Software Effort

Optimized Extreme Gradient Boosting using Particle Swarm Optimization for Software Effort Estimation

Authors

  • Achmad Fahreza Alif Pahlevi Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Mokhammad Amin Hariyadi Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Agung Teguh Wibowo Almais Universitas Islam Negeri Maulana Malik Ibrahim Malang

DOI:

https://doi.org/10.57152/malcom.v5i3.2055

Keywords:

Extreme Gradient Boosting (XGBoost), Optimasi, Particle Swarm Optimization (PSO), Prediksi, Software Effort Estimation (SEE)

Abstract

Estimasi upaya perangkat lunak (SEE) sangat penting dalam manajemen proyek, namun akurasi sering terganggu oleh kompleksitas proyek. Untuk mengatasinya, studi ini mengusulkan metode hibrida inovatif Particle Swarm Optimization (PSO) - Extreme Gradient Boosting (XGBoost) untuk SEE. Algoritma PSO mengoptimalkan hiperparameter XGBoost, meningkatkan kemampuannya memodelkan hubungan nonlinier dalam data proyek perangkat lunak, sehingga mengurangi kesalahan estimasi. Hasil eksperimen pada kumpulan data China dan Nasa93 menunjukkan bahwa PSO-XGBoost secara signifikan mengungguli metode tradisional dan model pembelajaran mesin mandiri. Metode yang diusulkan mencapai Root Mean Square Error (RMSE) yang lebih rendah sebesar 0,024 untuk China dan 0,0653 untuk Nasa93 menunjukkan efektivitasnya dalam memberikan estimasi upaya yang presisi. Meskipun memiliki kompleksitas komputasi dan bergantung pada data berkualitas, studi ini berkontribusi pada bidang SEE dengan menyajikan solusi praktis dan andal, membantu manajer perangkat lunak dalam perencanaan sumber daya dan pengambilan keputusan.

Downloads

Download data is not yet available.

References

E. Cibir and T. E. Ayyildiz, “An Empirical Study on Software Test Effort Estimation for Defense Projects,” IEEE Access, vol. 10, pp. 48082–48087, 2022, doi: 10.1109/ACCESS.2022.3172326.

T. J. Gandomani, M. Dashti, H. Zulzalil, and A. B. M. Sultan, “Enhancing Software Effort Estimation in the Analogy-Based Approach through the Combination of Regression Methods,” IEEE Access, vol. 12, no. September, pp. 152122–152137, 2024, doi: 10.1109/ACCESS.2024.3480829.

M. Ali et al., “Analysis of Feature Selection Methods in Software Defect Prediction Models,” IEEE Access, vol. 11, no. November, pp. 145954–145974, 2023, doi: 10.1109/ACCESS.2023.3343249.

H. Hooshyar et al., “Impact in Software Engineering Activities After One Year of COVID-19 Restrictions for Startups and Established Companies,” IEEE Access, vol. 11, no. April, pp. 55178–55203, 2023, doi: 10.1109/ACCESS.2023.3279917.

M. Mumtaz, N. Ahmad, M. Usman Ashraf, A. M. Alghamdi, A. A. Bahaddad, and K. A. Almarhabi, “Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR,” IEEE Access, vol. 10, pp. 65355–65375, 2022, doi: 10.1109/ACCESS.2022.3182703.

A. G. Priya Varshini, K. Anitha Kumari, D. Janani, and S. Soundariya, “Comparative analysis of Machine learning and Deep learning algorithms for Software Effort Estimation,” J. Phys. Conf. Ser., vol. 1767, no. 1, 2021, doi: 10.1088/1742-6596/1767/1/012019.

A. Kaushik, P. Kaur, N. Choudhary, and Priyanka, “Stacking regularization in analogy-based software effort estimation,” Soft Comput., vol. 26, no. 3, pp. 1197–1216, 2022, doi: 10.1007/s00500-021-06564-w.

S. S. Gautam and V. Singh, “Adaptive Discretization Using Golden Section to Aid Outlier Detection for Software Development Effort Estimation,” IEEE Access, vol. 10, no. August, pp. 90369–90387, 2022, doi: 10.1109/ACCESS.2022.3200149.

M. A. Shah, D. N. A. Jawawi, M. A. Isa, M. Younas, A. Abdelmaboud, and F. Sholichin, “Ensembling Artificial Bee Colony with Analogy-Based Estimation to Improve Software Development Effort Prediction,” IEEE Access, vol. 8, pp. 58402–58415, 2020, doi: 10.1109/ACCESS.2020.2980236.

H. Karna, S. Gotovac, and L. Vickovi?, “Data mining approach to effort modeling on agile software projects,” Inform., vol. 44, no. 2, pp. 231–239, 2020, doi: 10.31449/inf.v44i2.2759.

H. D. P. De Carvalho, R. Fagundes, and W. Santos, “Extreme Learning Machine Applied to Software Development Effort Estimation,” IEEE Access, vol. 9, pp. 92676–92687, 2021, doi: 10.1109/ACCESS.2021.3091313.

Y. Xie, Y. Zhu, C. A. Cotton, and P. Wu, “A model averaging approach for estimating propensity scores by optimizing balance,” Stat. Methods Med. Res., vol. 28, no. 1, pp. 84–101, 2019, doi: 10.1177/0962280217715487.

V. Srivastava, V. K. Dwivedi, and A. K. Singh, “Cryptocurrency Price Prediction Using Enhanced PSO with Extreme Gradient Boosting Algorithm,” Cybern. Inf. Technol., vol. 23, no. 2, pp. 170–187, 2023, doi: 10.2478/cait-2023-0020.

N. Li, L. Liu, D. Zou, and X. Liu, “Node Localization Algorithm for Irregular Regions Based on Particle Swarm Optimization Algorithm and Reliable Anchor Node Pairs,” IEEE Access, vol. 12, no. March, pp. 37470–37482, 2024, doi: 10.1109/ACCESS.2024.3374518.

A. Abdo, O. Abdelkader, and L. Abdel-Hamid, “SA-PSO-GK++: A New Hybrid Clustering Approach for Analyzing Medical Data,” IEEE Access, vol. 12, no. December 2023, pp. 12501–12516, 2024, doi: 10.1109/ACCESS.2024.3350442.

A. Ullah, N. Javaid, M. U. Javed, Pamir, B. S. Kim, and S. A. Bahaj, “Adaptive Data Balancing Method Using Stacking Ensemble Model and Its Application to Non-Technical Loss Detection in Smart Grids,” IEEE Access, vol. 10, no. November, pp. 133244–133255, 2022, doi: 10.1109/ACCESS.2022.3230952.

N. M. Alsheikh and N. M. Munassar, “Improving Software Effort Estimation Models Using Grey Wolf Optimization Algorithm,” IEEE Access, vol. 11, no. November, pp. 143549–143579, 2023, doi: 10.1109/ACCESS.2023.3340140.

A. O. Sousa et al., “Applying Machine Learning to Estimate the Effort and Duration of Individual Tasks in Software Projects,” IEEE Access, vol. 11, no. August, pp. 89933–89946, 2023, doi: 10.1109/ACCESS.2023.3307310.

A. Jadhav, S. K. Shandilya, I. Izonin, and M. Gregus, “Effective Software Effort Estimation Leveraging Machine Learning for Digital Transformation,” IEEE Access, vol. 11, no. August, pp. 83523–83536, 2023, doi: 10.1109/ACCESS.2023.3293432.

P. D. Raval and A. S. Pandya, “A Hybrid PSO-ANN-based Fault Classification System for EHV Transmission Lines,” IETE J. Res., vol. 68, no. 4, pp. 3086–3099, 2022, doi: 10.1080/03772063.2020.1754299.

J. Fang, H. Wang, F. Yang, K. Yin, X. Lin, and M. Zhang, “A failure prediction method of power distribution network based on PSO and XGBoost,” Aust. J. Electr. Electron. Eng., vol. 19, no. 4, pp. 371–378, 2022, doi: 10.1080/1448837X.2022.2072447.

F.H. Yun, “China: Effort Estimation Dataset,” Zenodo, 2010. https://doi.org/10.5281/zenodo.268446

T. Menzies, “Nasa93,” Zenodo, 2008. https://doi.org/10.5281/zenodo.268419 (accessed Nov. 27, 2024).

L. M. Alves, S. Oliveira, P. Ribeiro, and R. J. MacHado, “An empirical study on the estimation of size and complexity of software applications with function points analysis,” Proc. - 14th Int. Conf. Comput. Sci. Its Appl. ICCSA 2014, pp. 27–34, 2014, doi: 10.1109/ICCSA.2014.17.

P. Suresh Kumar, H. S. Behera, J. Nayak, and B. Naik, “A pragmatic ensemble learning approach for effective software effort estimation,” Innov. Syst. Softw. Eng., vol. 18, no. 2, pp. 283–299, 2022, doi: 10.1007/s11334-020-00379-y.

R. Shetty, M. Geetha, U. Dinesh Acharya, and G. Shyamala, “Enhancing Ovarian Tumor Dataset Analysis through Data Mining Preprocessing Techniques,” IEEE Access, vol. 12, no. August, pp. 122300–122312, 2024, doi: 10.1109/ACCESS.2024.3450520.

T. A. Alghamdi and N. Javaid, “A Survey of Preprocessing Methods Used for Analysis of Big Data Originated from Smart Grids,” IEEE Access, vol. 10, pp. 29149–29171, 2022, doi: 10.1109/ACCESS.2022.3157941.

A. Ambarwari, Q. Jafar Adrian, and Y. Herdiyeni, “Analysis of the Effect of Data Scaling on the Performance of the Machine Learning Algorithm for Plant Identification,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 1, pp. 117–122, 2020, doi: 10.29207/resti.v4i1.1517.

H. Henderi, “Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer,” IJIIS Int. J. Informatics Inf. Syst., vol. 4, no. 1, pp. 13–20, 2021, doi: 10.47738/ijiis.v4i1.73.

P. M. Kurniawan, A. T. W. Almais, M. A. Hariyadi, M. A. Yaqin, and Suhartono, “Prediction of Civil Servant Performance Allowances Using the Neural Network Backpropagation Method,” Int. J. Informatics Vis., vol. 7, no. 3, pp. 673–680, 2023, doi: 10.30630/joiv.7.3.1698.

H. Phan, A. Ahmad, and D. Saraswat, “Identification of Foliar Disease Regions on Corn Leaves Using SLIC Segmentation and Deep Learning Under Uniform Background and Field Conditions,” IEEE Access, vol. 10, no. September, pp. 111985–111995, 2022, doi: 10.1109/ACCESS.2022.3215497.

A. Gopal, M. M. Sultani, and J. C. Bansal, “On Stability Analysis of Particle Swarm Optimization Algorithm,” Arab. J. Sci. Eng., vol. 45, no. 4, pp. 2385–2394, 2020, doi: 10.1007/s13369-019-03991-8.

P. Montero-Manso, G. Athanasopoulos, R. J. Hyndman, and T. S. Talagala, “FFORMA: Feature-based forecast model averaging,” Int. J. Forecast., vol. 36, no. 1, pp. 86–92, 2020, doi: 10.1016/j.ijforecast.2019.02.011.

S. E. Herni Yulianti, Oni Soesanto, and Yuana Sukmawaty, “Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit,” J. Math. Theory Appl., vol. 4, no. 1, pp. 21–26, 2022, doi: 10.31605/jomta.v4i1.1792.

F. Yulianto, W. F. Mahmudy, and A. A. Soebroto, “Comparison of Regression, Support Vector Regression (SVR), and SVR-Particle Swarm Optimization (PSO) for Rainfall Forecasting,” J. Inf. Technol. Comput. Sci., vol. 5, no. 3, pp. 235–247, 2020, doi: 10.25126/jitecs.20205374.

Z. Rais, “Analisis Support Vector Regression (Svr) Dengan Kernel Radial Basis Function (Rbf) Untuk Memprediksi Laju Inflasi Di Indonesia,” VARIANSI J. Stat. Its Appl. Teach. Res., vol. 4, no. 1, pp. 30–38, 2022, doi: 10.35580/variansiunm13.

Downloads

Published

2025-07-31

How to Cite

Alif Pahlevi, A. F., Hariyadi, M. A., & Almais, A. T. W. (2025). Optimasi Extreme Gradient Boosting dengan Particle Swarm Optimization untuk Estimasi Software Effort: Optimized Extreme Gradient Boosting using Particle Swarm Optimization for Software Effort Estimation. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 5(3), 930-941. https://doi.org/10.57152/malcom.v5i3.2055