Penerapan Hyperparameter Tuning pada Model Klasifikasi untuk Prediksi Risiko Penyakit Jantung
Implementation of Hyperparameter Tuning for Classification Models in Heart Disease Risk Prediction
DOI:
https://doi.org/10.57152/malcom.v5i4.2138Keywords:
Algoritma Klasifikasi, Deteksi Dini, Hyperparameter Tuning, Machine Learning, Penyakit JantungAbstract
Penyakit jantung adalah penyebab utama kematian di seluruh dunia, sehingga penting untuk melakukan deteksi dini secara tepat untuk menurunkan angka kematian. Tantangan utama dalam penelitian ini adalah bagaimana cara meningkatkan efektivitas model klasifikasi dalam mendeteksi penyakit jantung. Tujuan dari penelitian ini adalah untuk membandingkan kinerja beberapa algoritma klasifikasi dan menilai dampak hyperparameter tuning terhadap peningkatan akurasi prediksi. Metode yang digunakan mencakup penerapan algoritma Logistic Regression, Decision Tree, Support Vector Machine (SVM), dan K-Nearest Neighbor (K-NN) pada dataset Cleveland Clinic Heart Disease yang diambil dari Kaggle. Proses hyperparameter tuning dilaksanakan dengan menggunakan gridsearchCV dan randomizedsearchCV bersama dengan cross-validation. Temuan penelitian menunjukkan bahwa setelah dilakukan tuning, logistic regression, K-NN, dan SVM mencapai akurasi tertinggi yang sama, yaitu 84%. Decision tree berada di posisi terendah dengan akurasi 80%. Selain itu, nilai precision, recall, dan F1-score juga meningkat, terutama pada logistic regression dan K-NN yang menunjukkan hasil paling seimbang. Hasil ini membuktikan bahwa hyperparameter tuning sangat membantu dalam meningkatkan kinerja model klasifikasi dan mendukung penggunaan machine learning untuk deteksi dini penyakit jantung secara lebih efektif.
Downloads
References
N. Nurdiansyah, F. S. Febriyan, Z. G. D. Amanta, D. A. Saputra, and W. M. Baihaqi, “Analisis Kesehatan Mental untuk Mencegah Gangguan Mental pada Mahasiswa Menggunakan Algoritma K-Nearest Neighbor (K-NN) dan Random Forest,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 5, no. 1, pp. 1–9, Nov. 2024, doi: 10.57152/malcom.v5i1.1537.
R. B. Yudhistira, M. Y. Yudhistira, and R. T. Supraptomo, “Perioperative Management in Parturient with Severe Preeclampsia, Obesity, and COVID-19,” Solo Journal of Anesthesi, Pain and Critical Care (SOJA), vol. 1, no. 2, p. 67, Oct. 2021, doi: 10.20961/soja.v1i2.54984.
A. Almomany, W. R. Ayyad, and A. Jarrah, “Optimized implementation of an improved KNN classification algorithm using Intel FPGA platform: Covid-19 case study,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 6, pp. 3815–3827, Jun. 2022, doi: 10.1016/j.jksuci.2022.04.006.
G. Manikandan, B. Pragadeesh, V. Manojkumar, A. L. Karthikeyan, R. Roselin, and A. H. Gandomi, “Classification models combined with Boruta feature selection for heart disease prediction,” Inform Med Unlocked, vol. 44, Jan. 2024, doi: 10.1016/j.imu.2023.101442.
R. Roscher, B. Bohn, M. F. Duarte, and J. Garcke, “Explainable Machine Learning for Scientific Insights and Discoveries,” IEEE Access, vol. 8, pp. 42200–42216, 2020, doi: 10.1109/ACCESS.2020.2976199.
T. A. E. Putri, T. Widiharih, and R. Santoso, “Penerapan Tuning Hyperparameter Randomsearchcv Pada Adaptive Boosting Untuk Prediksi Kelangsungan Hidup Pasien Gagal Jantung,” Jurnal Gaussian, vol. 11, no. 3, pp. 397–406, Jan. 2023, doi: 10.14710/j.gauss.11.3.397-406.
C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electronic Markets, 2021, doi: 10.1007/s12525-021-00475-2.
H. Purnomo, Tad Gonsalves, Evangs Mailoa, F. J. Santoso, and M. R. Pribadi, “Metaheuristics Approach for Hyperparameter Tuning of Convolutional Neural Network,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 8, no. 3, pp. 340–345, Jun. 2024, doi: 10.29207/resti.v8i3.5730.
W. Firgiawan, D. Yustianisa, N. Afiah Nur, and F. Teknik, “Hyperparameter Tuning for Optimizing Stunting Classification with KNN, SVM, and Naïve Bayes Algorithms,” Jurnal TEKNO KOMPAK, vol. 19, no. 1, 2025, doi: https://doi.org/10.33365/jtk.v19i1.4574.
Hirmayant and E. Utami, “Enhanced Heart Disease Diagnosis Using Machine Learning Algorithms: A Comparison of Feature Selection,” Jurnal RESTI, vol. 9, no. 2, pp. 385–392, Apr. 2025, doi: 10.29207/resti.v9i2.6175.
P. A. Jusia, A. Rahim, H. Yani, and J. Jasmir, “Improving Performance of KNN and C4.5 using Particle Swarm Optimization in Classification of Heart Diseases,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 8, no. 3, pp. 333–339, Jun. 2024, doi: 10.29207/resti.v8i3.5710.
S. A. Bahanshal, R. S. Baraka, B. Kim, and V. Verdhan, “An Optimized Hybrid Fuzzy Weighted k-Nearest Neighbor with the Presence of Data Imbalance.” [Online]. Available: www.ijacsa.thesai.org
A. S. Abdulameer, S. Tiun, N. S. Sani, M. Ayob, and A. Y. Taha, “Enhanced clustering models with wiki-based k-nearest neighbors-based representation for web search result clustering,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 3, pp. 840–850, Mar. 2022, doi: 10.1016/j.jksuci.2020.02.003.
J. Haldy and L. Meily Kurniawidjaja, “Coronary Heart Disease Risk and Associated Risk Factor Among Workers at PT.X in 2023,” Media Publikasi Promosi Kesehatan Indonesia (MPPKI), vol. 7, no. 6, pp. 1636–1641, Jun. 2024, doi: 10.56338/mppki.v7i6.5318.
D. Kurniadhi, G. Limbong Masiku, and M. P. Sari, “Description of Risk Factors for Coronary Heart Disease at the Family Medical Center Hospital Heart Clinic In 2021,” 2024. [Online]. Available: http://ijsoc.goacademica.com
K. Budholiya, S. K. Shrivastava, and V. Sharma, “An optimized XGBoost based diagnostic system for effective prediction of heart disease,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 7, pp. 4514–4523, Jul. 2022, doi: 10.1016/j.jksuci.2020.10.013.
World Health Organization, “Cardiovascular diseases (CVDs),” WHO Fact Sheet, 2019. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds
Kementerian Kesehatan Republik Indonesia, “Hasil Utama Riskesdas 2018,” Badan Penelitian dan Pengembangan Kesehatan, 2018. [Online]. Available: https://dinkesjatengprov.go.id/v2018/storage/2019/09/Hasil-Riskesdas-2018.pdf
A. Avigan, “Cleveland Clinic Heart Disease Dataset,” Kaggle, 2020. [Online]. Available: https://www.kaggle.com/datasets/aavigan/cleveland-clinic-heart-disease-dataset
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Siti Kania Nur Alya Putri, Indah Jumiatin, Indri Sulistia, Novan Alkaf Bahraini Saputra, Nuruddin Wiranda

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright © by Author; Published by Institut Riset dan Publikasi Indonesia (IRPI)
This Indonesian Journal of Machine Learning and Computer Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

















