Analisis Perbandingan Kinerja Web Humas Infrastruktur On-Premise dan Cloud Computing dengan Load Balancer Round Robin

Comparative Analysis of Public Relations Web Performance of On-Premise and Cloud Computing Infrastructure with Round Robin Load Balancer

Authors

  • Robby Febrianur Saleh Universitas Amikom Yogyakarta
  • Kusrini Kusrini Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.57152/malcom.v5i3.2182

Keywords:

Cloud Computing, Kinerja Sistem, Load Balancer, Round Robin, Rumah Sakit

Abstract

Penelitian ini menganalisis perbandingan kinerja web humas untuk pelayanan publik antara infrastruktur on-premise dan cloud computing dengan load balancer round robin di RSUD Ratu Aji Putri Botung. Era digitalisasi mendorong rumah sakit mengoptimalkan sistem informasi termasuk web humas sebagai platform komunikasi dengan masyarakat. Metode penelitian menggunakan pendekatan eksperimental komparatif dengan pengujian beban menggunakan Apache JMeter pada tiga skenario: 50, 200, dan 2000 concurrent users. Parameter yang dianalisis meliputi response time, throughput, CPU utilization, memory usage, dan availability. Hasil penelitian menunjukkan cloud computing dengan load balancer round robin memberikan performa superior dengan response time excellent (215-293 ms) untuk semua skenario vs on-premise yang mengalami performance collapse hingga 111,969 ms pada 2000 users. CPU utilization cloud computing optimal (78-90%) dengan distribusi beban merata, sedangkan on-premise under-utilized (6-49%). Network traffic cloud computing consistent (354-356K bytes/sec) menunjukkan throughput predictable, sementara on-premise erratic (45-551K bytes/sec). Load balancer round robin terbukti highly effective dengan perfect success rate (100%) vs on-premise (99.3%). Cloud computing menunjukkan excellent scalability dan 497.8x lebih cepat pada extreme load. Penelitian merekomendasikan implementasi cloud computing untuk web humas rumah sakit guna meningkatkan kualitas pelayanan publik significantly

Downloads

Download data is not yet available.

References

P. Shojaei, E. Vlahu-Gjorgievska, and Y. W. Chow, “Security and Privacy of Technologies in Health Information Systems: A Systematic Literature Review,” Computers, vol. 13, no. 2, 2024, doi: 10.3390/computers13020041.

A. Al?marsy, P. Chaudhary, and J. A. Rodger, “A model for examining challenges and opportunities in use of cloud computing for health information systems,” Appl. Syst. Innov., vol. 4, no. 1, pp. 1–20, 2021, doi: 10.3390/asi4010015.

S. Younus, K. Kumar, I. A. Kandhro, A. A. Laghari, and A. Ali, “Systematic Analysis of On Premise and Cloud Services,” Int. J. Cloud Comput., vol. 13, no. 3, 2024, doi: 10.1504/ijcc.2024.10063641.

L. Ismail, H. Materwala, and A. Hennebelle, “A scoping review of integrated blockchain-cloud (Bcc) architecture for healthcare: Applications, challenges and solutions,” Sensors, vol. 21, no. 11, 2021, doi: 10.3390/s21113753.

S. Sachdeva et al., “Unraveling the role of cloud computing in health care system and biomedical sciences,” Heliyon, vol. 10, no. 7, p. e29044, 2024, doi: 10.1016/j.heliyon.2024.e29044.

R. Huang and S. Fang, “Comparative analysis of cloud service providers,” Int. J. Cloud Comput. Database Manag., vol. 5, no. 1, pp. 13–16, 2024, doi: 10.33545/27075907.2024.v5.i1a.55.

M. K. Ahmed, S. A. Salman, and O. Y. Abdulhammed, “Load balancing techniques in cloud computing: A review,” Samarra J. Pure Appl. Sci., vol. 6, no. 1, pp. 223–250, 2024, doi: 10.54153/sjpas.2024.v6i1.526.

A. Pupykina and G. Agosta, “Survey of Memory Management Techniques for HPC and Cloud Computing,” IEEE Access, vol. 7, pp. 167351–167373, 2019, doi: 10.1109/ACCESS.2019.2954169.

H. Rai, S. K. Ojha, and A. Nazarov, “Comparison Study of Load Balancing Algorithm,” Proc. - IEEE 2020 2nd Int. Conf. Adv. Comput. Commun. Control Networking, ICACCCN 2020, pp. 852–856, 2020, doi: 10.1109/ICACCCN51052.2020.9362905.

R. Zhanuzak, M. A. Ala’anzy, M. Othman, and A. Algarni, “Optimising Cloud Computing Performance with an Enhanced Dynamic Load Balancing Algorithm for Superior Task Allocation,” IEEE Access, vol. 12, no. November, 2024, doi: 10.1109/ACCESS.2024.3508793.

A. Al?marsy, P. Chaudhary, and J. A. Rodger, “A model for examining challenges and opportunities in use of cloud computing for health information systems,” Appl. Syst. Innov., vol. 4, no. 1, pp. 1–20, 2021, doi: 10.3390/asi4010015.

Y. A. M. Qasem, R. Abdullah, Y. Yaha, and R. Atana, “Continuance use of cloud computing in higher education institutions: A conceptual model,” Appl. Sci., vol. 10, no. 19, 2020, doi: 10.3390/APP10196628.

R. Singh, “Intelligent Load Balancing Systems using Reinforcement Learning System”.

C. Fisher, “Cloud versus On-Premise Computing,” Am. J. Ind. Bus. Manag., vol. 08, no. 09, pp. 1991–2006, 2018, doi: 10.4236/ajibm.2018.89133.

A. M. Alakeel, “Load Balancing in Distributed Computer Systems Article in,” Int. J. Comput. Sci. Int. J. Comput. Sci. Inf. Secur., vol. 8, no. 4, 2010.

A. Pupykina and G. Agosta, “Survey of Memory Management Techniques for HPC and Cloud Computing,” IEEE Access, vol. 7, pp. 167351–167373, 2019, doi: 10.1109/ACCESS.2019.2954169.

Z. Juhasz, “Quantitative cost comparison of on-premise and cloud infrastructure based EEG data processing,” Cluster Comput., vol. 24, no. 2, pp. 625–641, 2021, doi: 10.1007/s10586-020-03141-y.

Downloads

Published

2025-08-15

How to Cite

Saleh, R. F., & Kusrini, K. (2025). Analisis Perbandingan Kinerja Web Humas Infrastruktur On-Premise dan Cloud Computing dengan Load Balancer Round Robin: Comparative Analysis of Public Relations Web Performance of On-Premise and Cloud Computing Infrastructure with Round Robin Load Balancer. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 5(3), 1107-1116. https://doi.org/10.57152/malcom.v5i3.2182