Perbandingan Algoritma Deep Learning untuk Analisis Sentimen Ekowisata di Bogor
Comparison of Deep Learning Algorithm in Sentiment Analysis Ecotourism in Bogor
DOI:
https://doi.org/10.57152/malcom.v5i3.2191Keywords:
Bogor, Ekowisata, Deep Learning, Scraping, SentimenAbstract
Bogor memiliki destinasi ekowisata unggulan di Indonesia yang menawarkan keasrian alam dan kemudahan akses dari Jakarta. Namun, peningkatan jumlah wisatawan menimbulkan hambatan terhadap pengelolaan lingkungan, seperti pengelolaan sampah dan tekanan terhadap sumber daya alam. Media sosial, khususnya Google Maps, berperan penting dalam promosi dan memahami perilaku wisatawan melalui fitur ulasan. Studi ini bertujuan melakukan analisis sentimen mengenai ulasan ekowisata di Bogor yang diambil dari Google Maps, menggunakan metode Deep Learning berbasis neural network, yaitu Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), dan Long Short-Term Memory (LSTM), dan membandingkan performa ketiga model tersebut untuk menentukan metode terbaik dalam mengklasifikasikan sentimen pengunjung. Hasil studi ini menunjukkan, model CNN memiliki akurasi tertinggi yaitu sebesar 72 persen dan lebih unggul dibanding model RNN dan LSTM. Model CNN dapat digunakan sebagai acuan utama dalam menerapkan analisis sentimen pada topik yang sejenis.
Downloads
References
G. Pavlidis et al., “Sustainable ecotourism through cutting-edge technologies,” Sustainability, vol. 14, no. 2, p. 800, 2022.
S. C. Pujar and N. Mishra, “Ecotourism industry in India: A review of current practices and prospects,” Anatolia, vol. 32, no. 2, pp. 289–302, 2021.
KLHK, “Menilik Kunjungan di Kawasan Konservasi pada Tahun 2023.”
R. P. Batubara and D. A. Putri, “Analisis pengaruh daya tarik wisata terhadap minat berkunjung ulang wisatawan di taman nasional gunung halimun salak,” Jurnal Industri Pariwisata, vol. 4, no. 2, pp. 94–101, 2022.
Humas BRIN, “208 Tahun Kebun Raya Bogor, Meneruskan Jejak Reinwardt,” Brin.go.id.
L. Kusumaningrum, F. Rachmalia, M. F. Ramadhan, S. P. Sari, and F. F. Karim, “Analisis Strategi Pengembangan Ekowisata Serta Dampaknya Terhadap Masyarakat Setempat (Studi Kasus: Umbul Brondong, Desa Ngrundul, Kecamatan Kebonarum, Kabupaten Klaten),” Jurnal Hutan Pulau-Pulau Kecil, vol. 7, no. 2, pp. 120–133, 2023.
M. T. Sultan, F. Sharmin, A. Badulescu, E. Stiubea, and K. Xue, “Travelers’ responsible environmental behavior towards sustainable coastal tourism: An empirical investigation on social media user-generated content,” Sustainability, vol. 13, no. 1, p. 56, 2020.
B. Mathayomchan and K. Sripanidkulchai, “Utilizing Google translated Reviews from Google maps in sentiment analysis for Phuket tourist attractions,” in 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), IEEE, 2019, pp. 260–265.
W. Xiao, “Theme Modeling Study of Online Media Data for Ecotourism Based on Natural Language Processing,” in 2025 IEEE International Conference on Electronics, Energy Systems and Power Engineering (EESPE), IEEE, 2025, pp. 1009–1016.
I. F. M. Yunus, R. Husain, and R. M. Idaris, “Sentiment analysis of tourist reviews on ecotourism clusters in Malaysia for sustainable development,” Selangor Business Review, pp. 1–21, 2024.
J. Gao, L. M. Gooi, K. M. Chong, X. Lyu, and J. Zhang, “Study on Satisfaction Evaluation of Ecotourism Through Advanced Network Text Mining,” IEEE Access, 2024.
L. Feng and W. Hua, “Research on Ecotourism Recommendation Based on Graph Neural Network,” Procedia Comput Sci, vol. 261, pp. 1201–1207, 2025.
N. C. Dang, M. N. Moreno-García, and F. De la Prieta, “Sentiment analysis based on deep learning: A comparative study,” Electronics (Basel), vol. 9, no. 3, p. 483, 2020.
D. Li and J. Qian, “Text sentiment analysis based on long short-term memory,” in 2016 First IEEE International Conference on Computer Communication and the Internet (ICCCI), IEEE, 2016, pp. 471–475.
R. A. N. Nayoan, “Analisis Sentimen Berbasis Fitur Pada Ulasan Tempat Wisata Menggunakan Metode Convolutional Neural Network(CNN),” Universitas Islam Indonesia, 2019.
N. K. Shadrina, “Analisis Sentimen Wisatawan Terhadap Pantai Di Bali Pada Situs Web Tripadvisor Menggunakan Metode Recurrent Neural Network (RNN),” Universitas Telkom, Bandung, 2021.
O. Harnantyo, “Analisis Sentimen Tempat Wisata Di Yogyakarta Menggunakan Metode Recurrent Neural Network Dengan Long Short Term Memory ,” STMIK Akakom Yogyakarta, 2019.
N. Soni and G. Lavania, “Automated Data Extraction from Google Maps Using Python-Based Web Scraping Techniques,” PRATIBODH, no. NCDSNS, 2025.
M. Siino, I. Tinnirello, and M. La Cascia, “Is text preprocessing still worth the time? A comparative survey on the influence of popular preprocessing methods on Transformers and traditional classifiers,” Inf Syst, vol. 121, p. 102342, 2024.
A. Miyajiwala, A. Ladkat, S. Jagadale, and R. Joshi, “On sensitivity of deep learning based text classification algorithms to practical input perturbations,” in Science and Information Conference, Springer, 2022, pp. 613–626.
O. Narushynska, V. Teslyuk, A. Doroshenko, and M. Arzubov, “Data sorting influence on short text manual labeling quality for hierarchical classification,” Big Data and Cognitive Computing, vol. 8, no. 4, p. 41, 2024.
A. Erkan and T. Güngör, “Analysis of Deep Learning Model Combinations and Tokenization Approaches in Sentiment Classification,” IEEE Access, vol. 11, pp. 134951–134968, 2023.
I. Akbar and M. Faisal, “Perbandingan analisis sentimen PLN Mobile: Machine learning vs. deep learning,” JOINTECS (Journal of Information Technology and Computer Science), vol. 8, no. 1, pp. 1–10, 2024.
J. J. A. Limbong, I. Sembiring, and K. D. Hartomo, “Analisis Klasifikasi Sentimen Ulasan pada E-Commerce Shopee Berbasis Word Cloud dengan Metode Naive Bayes dan K-Nearest Neighbor,” Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), vol. 9, no. 2, pp. 347–356, 2022.
M. Lepelaar et al., “Sentiment analysis of social survey data for local city councils,” Journal of Sensor and Actuator Networks, vol. 11, no. 1, p. 7, 2022.
A. D. Torres, H. Yan, A. H. Aboutalebi, A. Das, L. Duan, and P. Rad, “Patient facial emotion recognition and sentiment analysis using secure cloud with hardware acceleration,” in Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications, Elsevier, 2018, pp. 61–89.
H. Kim and Y.-S. Jeong, “Sentiment classification using convolutional neural networks,” Applied Sciences, vol. 9, no. 11, p. 2347, 2019.
M. Xiong, Artificial intelligence and causal inference. Chapman and Hall/CRC, 2022.
U. B. Mahadevaswamy and P. Swathi, “Sentiment analysis using bidirectional LSTM network,” Procedia Comput Sci, vol. 218, pp. 45–56, 2023.
A. Arias-Duart, E. Mariotti, D. Garcia-Gasulla, and J. M. Alonso-Moral, “A confusion matrix for evaluating feature attribution methods,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 3709–3714.
J. Foerderer, “Should we trust web-scraped data?,” arXiv preprint arXiv:2308.02231, 2023.
B. Irawan and O. Nurdiawan, “Naive Bayes Dan Wordcloud Untuk Analisis Sentimen Wisata Halal Pulau Lombok,” INFOTECH journal, vol. 9, no. 1, pp. 236–242, 2023.
M. Chu, Y. Chen, L. Yang, and J. Wang, “Language interpretation in travel guidance platform: Text mining and sentiment analysis of TripAdvisor reviews,” Front Psychol, vol. 13, p. 1029945, 2022.
W. Kim, S.-B. Kim, and E. Park, “Mapping tourists’ destination (dis) satisfaction attributes with user-generated content,” Sustainability, vol. 13, no. 22, p. 12650, 2021.
T. Apriliana, N. A. Maknunah, H. M. Nizam, R. Mardhatillah, and R. F. Nova, “Analyzing Tourist Satisfaction Using Factor Analysis and Text Mining: An Ecotourism Study in Girpasang Village,” Enthusiastic: International Journal of Applied Statistics and Data Science, pp. 37–50, 2024.
G. Ren and T. Hong, “Investigating online destination images using a topic-based sentiment analysis approach,” Sustainability, vol. 9, no. 10, p. 1765, 2017.
E. Bigne, C. Ruiz, C. Perez-Cabañero, and A. Cuenca, “Are customer star ratings and sentiments aligned? A deep learning study of the customer service experience in tourism destinations,” Service business, vol. 17, no. 1, pp. 281–314, 2023.
A. Kumar and M. Pal, “Enhancing Sentiment Analysis Through Multi-Channel Convolutional Neural Networks,” in AI and Green Technology Applications in Society, IGI Global Scientific Publishing, 2025, pp. 283–312.
Y. Qi, “CNNs and RNNs in aspect-level sentiment analysis and comparison,” Applied and Computational Engineering, vol. 6, pp. 1118–1126, 2023.
B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Foundations and Trends® in information retrieval, vol. 2, no. 1–2, pp. 1–135, 2008.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Peni Agustini, Muhammad Iqbal, Vicha Amalia Akbar, Robert Kurniawan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright © by Author; Published by Institut Riset dan Publikasi Indonesia (IRPI)
This Indonesian Journal of Machine Learning and Computer Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.