Multi-Classification of Pakcoy Plants using Machine Learning Methods with Smart Greenhouse Dataset

Authors

  • Agung Surya Wibowo University of Telecommunication https://orcid.org/0000-0001-9709-3888
  • Osphanie Mentari University Islam of Nusantara
  • Muhammad Zimamul Adli University Islam of Nusantara
  • Kusnayadi Kusnayadi University Islam of Nusantara

DOI:

https://doi.org/10.57152/malcom.v5i4.2212

Keywords:

Machine Learning, Pakcoy, Multiclassification, Random Forest, Smart Greenhouse

Abstract

This research aims to design and implement a monitoring and classification system for Pakcoy (Brassica rapa L.) plant conditions based on the Internet of Things (IoT) and machine learning algorithms in the Smart Greenhouse of Universitas Islam Nusantara. This study represents one of the applications of IoT and machine learning technology advancements to improve efficiency and effectiveness in the agricultural sector. The developed system utilizes CO?, SHT30, BH1750, and DHT22 sensors to monitor environmental parameters in real-time, including temperature, humidity, light intensity, panel box temperature, and CO? concentration. The monitoring data are used as input for classifying plant conditions using five machine learning methods: Support Vector Machine (SVM), Random Forest, Decision Tree, Logistic Regression, and Multilayer Perceptron (MLP). The results show that the Random Forest algorithm achieves the best performance, with an accuracy of 84%, precision of 86%, recall of 87%, and F1-score of 86%. The implementation of this system serves as a concrete step toward enhancing the efficiency, sustainability, and modernization of hydroponic agriculture in Indonesia

Downloads

Download data is not yet available.

References

Lapcharoensuk, R., Fhaykamta, C., Anurak, W., Chadwut, W., & Sitorus, A. (2023). Nondestructive detection of pesticide residue (Chlorpyrifos) on bok choi (Brassica rapa subsp. Chinensis) using a portable NIR spectrometer coupled with a machine learning approach. Foods, 12(5), 955.

Priyambodo, L., Fuadi, H. L., Nazhifah, N., Huzaimi, I., Prawira, A. B., Saputri, T. E., ... & Goran, P. K. (2022). Klasifikasi Kematangan Tanaman Hidroponik Pakcoy Menggunakan Metode SVM. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 6(1), 153-160.

Junia, L. S. (2017). Uji pertumbuhan dan hasil tanaman pakcoy (Brassica rapa L.) dengan pemberian pupuk organik cair pada system hidroponik. Agrifor, 16(1), 65-74.

Mardilla, M., & Pratiwi, A. (2021). Budidaya tanaman pakcoy (Brassica rapa subsp. chinensis) dengan teknik vertikultur pada lahan sempit di Kelurahan Penaraga Kecamatan Raba Kota Bima. Jurnal Pengabdian Magister Pendidikan IPA, 4(1).

Purwasih, R. (2019). Pemanfaatan lahan pekarangan untuk budi daya sayuran secara hidroponik di Kecamatan Sungailiat, Kabupaten Bangka, Provinsi Kepulauan Bangka Belitung. Agrokreatif: Jurnal Ilmiah Pengabdian Kepada Masyarakat, 5(3), 195-201.

Rahmadhani, L. E., Widuri, L. I., & Dewanti, P. (2020). Kualitas mutu sayur kasepak (kangkung, selada, dan pakcoy) dengan sistem budidaya akuaponik dan hidroponik. Jurnal Agroteknologi, 14(01), 33-43.

Suranata, I. W. A., & Prathama, I. G. H. (2021). Arsitektur Moisture Meter dengan Capacitive Sensing dan Serverless IoT untuk Hidroponik Fertigasi. J. RESTI (Rekayasa Sist. dan Teknol. Informasi), 1(10), 1-3.

Uchiyama, R., Yamaguchi, S., & Takahashi, Y. (2019, October). Solar power generation for compact hydroponic plant cultivation system. In 2019 19th International Conference on Control, Automation and Systems (ICCAS) (pp. 827-832). IEEE.

Afandi, M. A., Hikmah, I., & Agustinah, C. (2021). Microcontroller-based Artificial Lighting to Help Growth the Seedling Pakcoy. Jurnal Nasional Teknik Elektro.

Aliac, C. J. G., & Maravillas, E. (2018, November). IOT hydroponics management system. In 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1-5). IEEE.

Muzakir, A. (2021). Perangkat Lunak Mobile Untuk Mendeteksi Daun Pada Tanaman Menggunakan Algoritma K-Nearest Neighbor (K-NN). Journal of Information Technology Ampera, 2(2), 117-126.

Sarifah, L., Sa’adah, L., & Setiana, I. (2025). Comparison of Extreme Learning Machine (ELM) and Multi-Support Vector Machine (Multi-SVM) Methods in Herbal Plants Identification. Jurnal Matematika, Statistika dan Komputasi, 21(2), 354-367.

Deepa, B., & Ramesh, K. (2022). Epileptic seizure detection using deep learning through min max scaler normalization. International journal of health sciences, (I), 10981-10996.

Zhou, Z. H. (2021). Machine learning. Springer nature.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

Berrar, D. (2019). Cross-validation.

Ogunsanya, M., Isichei, J., & Desai, S. (2023). Grid search hyperparameter tuning in additive manufacturing processes. Manufacturing Letters, 35, 1031-1042.

Fuadi, A. Z., Haq, I. N., & Leksono, E. (2021). Support Vector Machine to Predict Electricity Consumption in the Energy Management Laboratory. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(3), 466-473.

Lamasigi, Z. Y., Hasan, M., & Lasena, Y. (2020). Local Binary Pattern untuk Pengenalan Jenis Daun Tanaman Obat menggunakan K-Nearest Neighbor. ILKOM Jurnal Ilmiah, 12(3), 208-218.

Ting, K. M. (2016). Confusion matrix. In Encyclopedia of machine learning and data mining (pp. 1-1). Springer, Boston, MA.

Luque, A., Carrasco, A., Martín, A., & de Las Heras, A. (2019). The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition, 91, 216-231.

Nugroho, A., Gumelar, A. B., Sooai, A. G., Sarvasti, D., & Tahalele, P. L. (2020). Perbandingan Performansi Algoritma Pengklasifikasian Terpandu Untuk Kasus Penyakit Kardiovaskular. J. RESTI (Rekayasa Sist. dan Teknol. Informasi), 4(5), 998-1006.

Lamasigi, Z. Y., Hasan, M., & Lasena, Y. (2020). Local Binary Pattern untuk Pengenalan Jenis Daun Tanaman Obat menggunakan K-Nearest Neighbor. ILKOM Jurnal Ilmiah, 12(3), 208-218.

Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC genomics, 21(1), 6.

O. Mentari., Wibowo, A. S., Adli, M. Z., & Toha, A. M. (2025). Multi Classification of Strawberry Leaves Using Support Vector Machine (SVM) Method on Smart Greenhouse Plants Based on Internet Of Things (IoT). Lontar Komputer: Jurnal Ilmiah Teknologi Informasi, 16(2), 07-07.

Priyambodo, L., Fuadi, H. L., Nazhifah, N., Huzaimi, I., Prawira, A. B., Saputri, T. E., ... & Goran, P. K. (2022). Klasifikasi Kematangan Tanaman Hidroponik Pakcoy Menggunakan Metode SVM. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 6(1), 153-160.

Kumar, A., Kumar, A., Kumar, R., & Kukreja, V. (2024, March). Cabbage Diseases Identification: A Hybrid CNN and Random Forest Approach for Multi-Classification. In 2024 International Conference on Automation and Computation (AUTOCOM) (pp. 24-28). IEEE.

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18-22.

Myles, A. J., Feudale, R. N., Liu, Y., Woody, N. A., & Brown, S. D. (2004). An introduction to decision tree modeling. Journal of Chemometrics: A Journal of the Chemometrics Society, 18(6), 275-285.

Wang, H., & Hu, D. (2005, October). Comparison of SVM and LS-SVM for regression. In 2005 International conference on neural networks and brain (Vol. 1, pp. 279-283). IEEE.

LaValley, M. P. (2008). Logistic regression. Circulation, 117(18), 2395-2399.

Popescu, M. C., Balas, V. E., Perescu-Popescu, L., & Mastorakis, N. (2009). Multilayer perceptron and neural networks. WSEAS Transactions on Circuits and Systems, 8(7), 579-588.

Downloads

Published

2025-10-31

How to Cite

Wibowo, A. S., Mentari, O., Adli, M. Z., & Kusnayadi, K. (2025). Multi-Classification of Pakcoy Plants using Machine Learning Methods with Smart Greenhouse Dataset. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 5(4), 1387-1395. https://doi.org/10.57152/malcom.v5i4.2212