Optimasi Performa K-Means melalui Hybrid Feature Engineering RFM dan Behavioral Analytics untuk Segmentasi Pelanggan

Optimizing K-Means Performance with Hybrid RFM and Behavioral Analytics for Customer Segmentation

Authors

  • Ilham B Universitas Sains dan Teknologi Indonesia
  • Rahmaddeni Rahmaddeni Universitas Sains dan Teknologi Indonesia
  • Aldino Putra Universitas Sains dan Teknologi Indonesia
  • Dimas Najario Universitas Sains dan Teknologi Indonesia
  • M. Aggie Fakhrizal Universitas Sains dan Teknologi Indonesia

DOI:

https://doi.org/10.57152/malcom.v5i4.2227

Keywords:

Behavioral Analytics, Clustering, K-Means Clustering, Rekayasa Fitur, RFM, Segmentasi Pelanggan

Abstract

Membagi pelanggan menjadi beberapa segmen itu krusial untuk kesuksesan strategi pemasaran. Dalam studi ini, kami mengusulkan metode kombinasi dengan memanfaatkan algoritma K-Means yang dipadukan dengan metrik Recency, Frequency, Monetary (RFM) serta wawasan dari analitik perilaku. Tujuan utama kami adalah untuk mengetahui seberapa besar pengaruh penambahan fitur RFM terhadap kualitas segmen yang dihasilkan. Untuk itu, pendekatan kami meliputi pembersihan data transaksi ritel, pembuatan fitur berbasis perilaku, dan penerapan dua metode klastering: K-Means standar dan versi yang ditingkatkan, yaitu RFM K-Means Aware++. Hasil klastering dievaluasi dengan visualisasi t-SNE, analisis distribusi klaster, dan pengukuran metrik validasi internal seperti Silhouette Score dan Davies-Bouldin Index. Temuan kami menunjukkan bahwa metode yang lebih baik dengan fitur RFM menghasilkan klaster yang lebih stabil, terpisah dengan baik, dan lebih akurat dalam mencerminkan perilaku pelanggan. Sebaliknya, model yang tidak menggunakan fitur RFM cenderung membentuk klaster yang tumpang tindih dan memberikan segmentasi yang kurang bermakna. Secara keseluruhan, studi ini menekankan bahwa rekayasa fitur yang tepat memiliki peran penting dalam meningkatkan performa algoritma klastering dan menawarkan segmentasi pelanggan yang lebih berharga

Downloads

Download data is not yet available.

References

Z. F. A. Syfa Nur Lathifah, “AI-Driven Customers Segmentation Using K-Means Clustering,” vol. 9, 2025, [Online]. Available: https://doi.org/10.70609/gtech.v9i1.6202

F. Alzami et al., “Implementation of RFM Method and K-Means Algorithm for Customer Segmentation in E-Commerce with Streamlit,” Ilk. J. Ilm., vol. 15, no. 1, pp. 32–44, 2023, doi: 10.33096/ilkom.v15i1.1524.32-44.

F. Putra, H. F. Tahiyat, R. M. Ihsan, R. Rahmaddeni, and L. Efrizoni, “Penerapan Algoritma K-Nearest Neighbor Menggunakan Wrapper Sebagai Preprocessing untuk Penentuan Keterangan Berat Badan Manusia,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 1, pp. 273–281, 2024, doi: 10.57152/malcom.v4i1.1085.

T. Ho, S. Nguyen, H. Nguyen, N. Nguyen, D. S. Man, and T. G. Le, “An Extended RFM Model for Customer Behaviour and Demographic Analysis in Retail Industry,” Bus. Syst. Res., vol. 14, no. 1, pp. 26–53, 2023, doi: 10.2478/bsrj-2023-0002.

C. P. Ufeli, M. U. Sattar, R. Hasan, and S. Mahmood, “Enhancing Customer Segmentation Through Factor Analysis of Mixed Data (FAMD)-Based Approach Using K-Means and Hierarchical Clustering Algorithms,” Information, vol. 16, no. 6, p. 441, 2025, doi: 10.3390/info16060441.

V. Holý and O. Sokol, “Clustering retail products based on customer behaviour,” vol. 60, 2017, [Online]. Available: https://doi.org/10.1016/j.asoc.2017.02.004

M. W. Rahmadhan, Radit, “Segmentation using Customers Lifetime Value: Hybrid K-means Clustering and Analytic Hierarchy Process,” vol. 8, 2022, [Online]. Available: https://doi.org/10.20473/jisebi.8.2.130-141

G. Ramkumar, J. Bhuvaneswari, S. Venugopal, S. Kumar, C. K. Ramasamy, and R. Karthick, “Enhancing customer segmentation: RFM analysis and K-Means clustering implementation,” Hybrid Adv. Technol., pp. 70–76, 2025, doi: 10.1201/9781003559139-9.

A. M. A. Zamil and T. G. Vasista, “Customer Segmentation Using RFM Analysis: Realizing Through Python Implementation,” Pacific Bus. Rev. Int., vol. 13, no. 11, pp. 24-36 WE-Emerging Sources Citation Index (ESCI), 2021.

A. Julian, A. Faqih, and G. Dwilestari, “Segmentasi Pelanggan Menggunakan Algoritma K-Means Pada Jaringan Telekomunikasi Untuk Optimalisasi Strategi Pemasaran,” J. Teknol. Terpadu, vol. 13, no. 1, pp. 94–100, 2025.

N. Suhartanto, S. Wijoyo, and W. Purnomo, “Strategi Peningkatan SDM Berdasarkan Pengelompokan Kualitas Kinerja Pegawai CV Mediatama Perkasa Bogor Menggunakan K-Means Clustering,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 5, pp. 2548–964, 2025, [Online]. Available: http://j-ptiik.ub.ac.id

S.-C. H. Wong Chun-Gee, Gee-Kok Tong, “Exploring Customer Segmentation in E-Commerce using RFM Analysis with Clustering Techniques,” vol. 12, 2024, [Online]. Available: https://doi.org/10.18080/jtde.v12n3.978

E. W. Agustin, K. Uthami, and A. I. Ulfa, “Optimization of Customer Segmentation in the Retail Industry Using the K-Medoid Algorithm,” vol. 5, no. July, pp. 766–775, 2025.

H. Safitri, S. P. L. Geni, F. Merry, M. Wati, and Haviluddin, “Penerapan K-Means Clustering untuk Segmentasi Konsumen E-Commerce Penerapan K-Means Clustering untuk Segmentasi Konsumen E-Commerce Berdasarkan Pola Pembelian,” JUKI J. Komput. dan Inform., vol. 7, pp. 89–99, 2025.

Ahmed Mohamed Ahmed Serwah, K. W. KHAW, Cheang Sharon Peck Yeng, and Alhamzah Alnoor, “Customer analytics for online retailers using weighted k-means and RFM analysis,” Data Anal. Appl. Math., vol. 4, no. 1, pp. 1–7, 2023, doi: 10.15282/daam.v4i1.9171.

J. M. John, O. Shobayo, and B. Ogunleye, “An Exploration of Clustering Algorithms for Customer Segmentation in the UK Retail Market,” Analytics, vol. 2, no. 4, pp. 809–823, 2023, doi: 10.3390/analytics2040042.

N. F. Fahrudin and R. Rindiyani, “Comparison of K-Medoids and K-Means Algorithms in Segmenting Customers based on RFM Criteria,” E3S Web Conf., vol. 484, 2024, doi: 10.1051/e3sconf/202448402008.

K. Das, S. Gupta, and A. Kumar, “CAS Condensed and Accelerated Silhouette: An Efficient Method for Determining the Optimal K in K-Means Clustering,” pp. 1–13, 2025, [Online]. Available: http://arxiv.org/abs/2507.08311

V. Dawane, P. Waghodekar, and J. Pagare, “RFM Analysis Using K-Means Clustering to Improve Revenue and Customer Retention,” SSRN Electron. J., no. Icsmdi, 2021, doi: 10.2139/ssrn.3852887.

Z. Yang, Y. Chen, and J. Corander, “T-SNE Is Not Optimized to Reveal Clusters in Data,” pp. 1–20, 2021, [Online]. Available: http://arxiv.org/abs/2110.02573

J. T. Anggelina, “Market Segmentation via K-Means Algorithm and RFM Analysis (Case Study: Microbusiness Sales Transactions),” vol. 1, 2024, [Online]. Available: https://proceeding.unesa.ac.id/index.php/iconbit/article/view/4208/1058

B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards K-means-friendly spaces: Simultaneous deep learning and clustering,” 34th Int. Conf. Mach. Learn. ICML 2017, vol. 8, pp. 5888–5901, 2017.

G. W. N. W. Zahro, Nafissatus, Nadia Annisa Maori, “Integration of RFM Method and K-Means Clustering for Customer Segmentation Effectiveness,” vol. 5, 2025, [Online]. Available: https://doi.org/10.20895/dinda.v5i1.1649

H. J. Wilbert, A. F. Hoppe, A. Sartori, S. F. Stefenon, and L. A. Silva, “Recency, Frequency, Monetary Value, Clustering, and Internal and External Indices for Customer Segmentation from Retail Data,” Algorithms, vol. 16, no. 9, 2023, doi: 10.3390/a16090396.

R. Gustriansyah, N. Suhandi, and F. Antony, “Clustering optimization in RFM analysis based on k-means,” Indones. J. Electr. Eng. Comput. Sci., vol. 18, no. 1, pp. 470–477, 2019, doi: 10.11591/ijeecs.v18.i1.pp470-477.

B. E. Adiana, I. Soesanti, and A. E. Permanasari, “Analisis Segmentasi Pelanggan Menggunakan Kombinasi Rfm Model Dan Teknik Clustering,” J. Terap. Teknol. Inf., vol. 2, no. 1, pp. 23–32, 2018, doi: 10.21460/jutei.2018.21.76.

Downloads

Published

2025-10-31

How to Cite

B, I., Rahmaddeni, R., Putra, A., Najario, D., & Fakhrizal, M. A. (2025). Optimasi Performa K-Means melalui Hybrid Feature Engineering RFM dan Behavioral Analytics untuk Segmentasi Pelanggan: Optimizing K-Means Performance with Hybrid RFM and Behavioral Analytics for Customer Segmentation. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 5(4), 1377-1386. https://doi.org/10.57152/malcom.v5i4.2227